Honam Mathematical J. ${\bf 37}$ (2015), No. 4, pp. 387–395 http://dx.doi.org/10.5831/HMJ.2015.37.4.387

BLOCH-TYPE SPACES AND THEIR COMPOSITION OPERATORS

SI HO KANG

Abstract. We investigate conditions under which a holomorphic self-map of the unit disk induces a bounded composition operator and study some properties of the composition operator from the Bloch-type spaces into a generalization of the Bloch-type spaces.

1. Introduction

For any real number α with $\alpha > -1$, we define $dA_{\alpha}(z) = (1 + \alpha)(1 - |z|^2)^{\alpha} dA$, where dA is the normalized area measure on the unit disk D. Since $\int_{D} (1 - |z|^2)^{\alpha} dA = \frac{1}{1 + \alpha}$, dA_{α} is a probability measure on D. For $p \ge 1$, the weighted Bergman space $L^p_a(dA_{\alpha})$ consists of analytic functions on D which are also in $L^p(D, dA_{\alpha})$. By the closedness of $L^2_a(dA_{\alpha})$, for each $z \in D$, there is a function K^{α}_z in L^2_a such that $f(z) = \langle f, K^{\alpha}_z \rangle$ for every f in $L^2_a(dA_{\alpha})$. In fact, $K^{\alpha}_z(w) = \frac{1}{(1 - \overline{z}w)^{2+\alpha}}$ is called the Bergman kernel, $||K^{\alpha}_z||_{2,\alpha} = \frac{1}{(1 - |z|^2)^{1+\frac{\alpha}{2}}}$ and we define $k^{\alpha}_z(w) = \frac{(1 - |z|^2)^{1+\frac{\alpha}{2}}}{(1 - \overline{z}w)^{2+\alpha}}$, where $|| \cdot ||_{p,\alpha}$ is the norm in the space

fine $k_z^{\alpha}(w) = \frac{(1-\overline{z}w)^{2+\alpha}}{(1-\overline{z}w)^{2+\alpha}}$, where $||\cdot||_{p,\alpha}$ is the norm in the space $L^p(D, dA_{\alpha})$ and $\langle \cdot, \cdot \rangle$ is the inner product in the space $L^2(D, dA_{\alpha})$. Moreover, we get the orthogonal projection P_{α} from $L^2(D, dA_{\alpha})$ on $L_a^2(dA_{\alpha})$, in fact, $P_{\alpha}(f)(z) = \int_D \frac{f(w)}{(1-z\overline{w})^{2+\alpha}} dA_{\alpha}(w) = \langle f, K_z^{\alpha} \rangle$.

Received March 17, 2015. Accepted August 21, 2015.

²⁰¹⁰ Mathematics Subject Classification. 47A38, 47B35.

Key words and phrases. weighted Bergman spaces, composition operators, Berezin transforms, integral operators.

Suppose $\beta > 0$. For any analytic function f on D, we define $||f||_{\beta} = \sup_{z \in D} (1 - |z|^2)^{\beta} |f'(z)|$. Then $|| \cdot ||_{\beta}$ is a complete semi-norm on B_{β} , where B_{β} is the space of analytic function f on D such that $||f||_{\beta}$ is finite. For $\beta > 0$, the β -Bloch space B_{β} is a Banach space with norm of f equals to $||f|| = ||f||_{\beta} + |f(0)|$ and B_1 is the classical Bloch space.

For the space H(D) of analytic functions on D, the composition operator $C_{\phi}: H(D) \to H(D)$ by $C_{\phi}(f) = f \circ \phi$, where ϕ is a holomorphic self-map of D.

For $z \in D$, let $\varphi_z(w) = \frac{z - w}{1 - \overline{z}w}$. Then φ_z is an element of $\operatorname{Aut}(D)$ which is the set of all bianalytic maps of D onto D and $\operatorname{Aut}(D)$ is the Möbius group under composition because $\varphi_z \circ \varphi_z$ is the identity map on D.

For $\alpha > -1$ and $z \in D$, we define $U_z^{\alpha} : H(D) \to H(D)$ by $U_z^{\alpha} f(w) = f \circ \varphi_z(w) \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{(1-\overline{z}w)^{2+\alpha}}$. We notice that $(U_z^{\alpha})^{-1} = U_z^{\alpha}$ and for $f \in L_a^2$, $||U_z^{\alpha}f||_{2,\alpha} = ||f||_{2,\alpha}$ and hence U_z^{α} is a unitary operator on $L_a^2(dA_{\alpha})$. For $f \in B_{\beta}$,

$$\begin{split} ||f \circ \varphi_z||_{\beta} &= \sup_w \left(1 - |w|^2\right)^{\beta} |(f \circ \varphi_z(w))'| \\ &= \sup_w \left(1 - |\varphi_z(w)|^2\right)^{\beta} |f'(w)| |\varphi'_z(\varphi_z(w))| \\ &= \sup_w \left(\frac{(1 - |w|^2)(1 - |z|^2)}{|1 - \overline{z}w|^2}\right)^{\beta} |f'(w)| \frac{|1 - \overline{z}w|^2}{1 - |z|^2} \\ &= \sup_w \left(1 - |w|^2\right)^{\beta} |f'(w)| (1 - |z|^2)^{\beta - 1} |1 - \overline{z}w|^{2 - 2\beta}. \end{split}$$

Thus $|| \cdot ||_1$ is Möbius invariant.

In this thesis, we prove that C_{ϕ} is a bounded linear operator on B_{β} under some condition and we study the bounded below property of C_{ϕ} . We introduce a generalization E_{γ} of the Bloch-type spaces and prove that the inclusion function and C_{ϕ} are bounded linear operators from B_{β} into E_{γ} where $\gamma = 2 + \frac{\alpha}{2} - \beta$.

Throughout the paper, we use the symbol $A \leq B$ ($A \approx B$, respectively) for nonnegative constants A and B to indicate that A is dominated by B times some positive constant ($A \leq B$ and $B \leq A$, respectively).

2. Composition Operators

A nice survey of previously known results connecting composition operators and Bloch-type spaces can be found in [1],[2],[4].

We assume that ϕ is a holomorphic self-map of D and C_{ϕ} is the composition operator on H(D).

Suppose $f \in B_{\beta}$ and $\beta > 1$. Then

$$\begin{split} |f(z) - f(0)| &= \left| z \int_0^1 f'(zt) dt \right| \le |z| ||f||_\beta \left| \int_0^1 \frac{1}{(1 - |zt|)^\beta} dt \right| \\ &= |z| ||f||_\beta \left| \sum_{n=0}^\infty \frac{\Gamma(n+\beta)}{n! \Gamma(\beta)} |z|^n \int_0^1 t^n dt \right| \le \frac{||f||_\beta}{(1 - |z|)^{\beta - 1} |1 - \beta|}. \end{split}$$

Thus

$$|f(z)| \leq \frac{||f||_{\beta}}{(1-|z|)^{\beta-1}}.$$

In fact, if $\beta > 1$ then $(1 - |z|^2)^{\beta - 1} f(z)$ is bounded on D (see [3]). Let $\tau_{\phi}^{\beta}(z) = \left(\frac{(1 - |z|^2)|\phi'(z)|}{1 - |\phi(z)|^2}\right)^{\beta}$. If ϕ is a Möbius transformation then Schwarz's lemma implies that $\phi(z) = \lambda \phi_a(z) = \lambda \frac{a - z}{1 - \overline{a}z}$ for some unit modulus λ . Moreover, $\frac{|\phi'(z)|}{1 - |\phi(z)|^2} \leq \frac{1}{1 - |z|^2}$, that is, $\frac{1 - |z|^2}{|\phi'(z)| \leq 1}$

$$\frac{1-|z|^2}{1-|\phi(z)|^2}|\phi'(z)| \le 1.$$

Since $|\phi'_a(z)|^{1-\beta} \leq \left(\frac{1}{1-|a|}\right)^{|1-\beta|}$, $(1-|z|^2)^{\beta}|(f\circ\phi_a)'(z)| = (1-|z|^2)^{\beta}|f'(\phi_a(z))||\phi'_a(z)|$ $= \tau^{\beta}_{\phi_a}(z)|\phi'_a(z)|^{1-\beta}(1-|\phi_a(z)|^2)^{\beta}|f'(\phi_a(z))|$ $\leq ||f||_{\beta}|\phi'_a(z)|^{1-\beta}, ||C_{\phi_a}|| \leq \left(\frac{1}{1-|a|}\right)^{|1-\beta|}.$

THEOREM 2.1. If $|\phi'(z)|^{1-\beta}$ is bounded and $\beta > 0$ then C_{ϕ} is a bounded linear operator on B_{β} .

Proof. Since ϕ is a holomorphic self-map of D, the Schwarz-Pick lemma implies that $\tau_{\phi}^{1}(z) \leq 1$ and hence $\tau_{\phi}^{\beta}(z) \leq 1$. If $f \in B_{\beta}$ then

$$(1 - |z|^{2})^{\beta} |(f \circ \phi)'(z)| = (1 - |z|^{2})^{\beta} |f'(\phi(z))| |\phi'(z)|$$

= $\tau_{\phi}^{\beta}(z) (1 - |\phi(z)|^{2})^{\beta} |f'(\phi(z))| |\phi'(z)|^{1-\beta}$
 $\leq ||f||_{\beta}.$

Thus $||C_{\phi}|| \leq \sup_{z \in D} |\phi'(z)|^{1-\beta}$.

COROLLARY 2.2. Suppose ϕ is a holomorphic self-map of D. If $|\psi'(z)|^{1-\beta}$ is bounded and $\beta > 0$, where $\psi = \phi_a \circ \phi$ and $\phi(0) = a$ then C_{ϕ} is bounded on B_{β} .

Proof. Since $\phi(0) = a$, $\psi(0) = \phi_a(\phi(0)) = 0$ and hence C_{ψ} is bounded. If $f \in B_{\beta}$ then $C_{\psi}(C_{\phi_a}(f)) = f \circ \phi_a \circ \psi = f \circ \phi = C_{\phi}(f)$ and hence $||C_{\phi}|| \leq ||C_{\psi}|| ||C_{\phi_a}||$. Since $|\psi'(z)|^{1-\beta}$ is bounded and $\beta > 0$, C_{ψ} is bounded and hence C_{ϕ} is bounded.

Notice that for each $f \in B_{\beta}$, $||f - f(0)|| = ||f - f(0)||_{\beta} = ||f||_{\beta}$ and hence let $B_a = \{f \in B_{\beta} : f(a) = 0\}$, where $a \in D$.

THEOREM 2.3. Suppose $\phi(0) = 0$. Then $C_{\phi} : B_{\beta} \to B_{\beta}$ is bounded below if and only if $C_{\phi} : B_0 \to B_0$ is bounded below.

Proof. Take any f in B_0 . Since $f \circ \phi(0) = f(0) = 0$, $f \circ \phi$ is in B_0 and hence $C_{\phi} : B_0 \to B_0$ is bounded below. Conversely, take any f in B_{β} . Since f - f(0) is in B_0 , there is M > 0 such that $||C_{\phi}(f - f(0))|| \ge M||f - f(0)|| = M||f||_{\beta}$. Since $||C_{\phi}(f - f(0))|| = \sup (1 - |z|^2)^{\beta}|((f - f(0)))|| = \sup (1 - |z|^2)^{\beta}|((f - f(0)) \circ \phi)'(z)| = \sup (1 - |z|^2)^{\beta}|(f \circ \phi)'(z)|$, $||C_{\phi}(f - f(0))|| + |f(0)| \ge M||f||_{\beta} + |f(0)|$ and hence $||C_{\phi}(f)|| \ge ||f||$. Thus C_{ϕ} is bounded below.

Suppose $\phi(0) = a$ and let $\psi = \phi_a \circ \phi$. Then $\psi(0) = 0$. Notice that C_{ψ} is bounded below on B_{β} if and only if C_{ϕ} is bounded below on B_{α} if and only if C_{ϕ} is bounded below on B_{β} . Here the second equivalence comes from the fact that for each $f \in B_0$, $C_{\psi}(f)(0) = g(a)$ for some $g \in B_a$ and the third equivalence comes from $f - f(a) \in B_a$. So we assume that $\phi(0) = 0$ and C_{ϕ} is acting on B_0 .

We say that a subset S of D is a sampling set for β -Bloch space B_{β} if there is k > 0 such that $\sup\{(1 - |z|^2)^{\beta}|f'(z)| : z \in D\} \leq k$ $\sup\{(1 - |z|^2)^{\beta}|f'(z)| : z \in S\}$ for all $f \in B_{\beta}$. For any $\varepsilon > 0$, let $\Omega_{\varepsilon} = \left\{z : \left(\frac{1 - |z|^2}{1 - |\phi(z)|^2}|\phi'(z)|\right)^{\beta} \geq \varepsilon\right\}.$

THEOREM 2.4. Suppose $\beta \geq 0$ and $|\phi'(z)|^{1-\beta}$ is bounded by 1. Then the composition operator C_{ϕ} is bounded below on B_{β} if and only if there is $\varepsilon > 0$ and there is a subset Ω_{ε} of D such that $G_{\varepsilon} = \phi(\Omega_{\varepsilon})$ is a sampling set for B_{β} , where $\Omega_{\varepsilon} = \{z \in D : \tau_{\phi}^{\beta}(z) \geq \varepsilon\}$. Moreover, for $0 < \varepsilon_1 < \varepsilon$, G_{ε_1} is also a sampling set for B_{β} .

Proof. Suppose that there is $\varepsilon > 0$ and there is a sampling set $G_{\varepsilon} = \phi(\Omega_{\varepsilon})$ for B_{β} . Take any f in B_0 . Then there is k > 0 such that

$$\begin{split} ||f|| &= ||f||_{\beta} \leq k \sup\{(1 - |\phi(z)|^2)^{\beta} |f'(\phi(z))| : z \in \Omega_{\varepsilon}\}\\ &\leq k \sup\{(\tau_{\phi}^{\beta}(z))^{-1} (1 - |z|^2)^{\beta} |f'(\phi(z))| |\phi'(z)|^{1-\beta} : z \in \Omega_{\varepsilon}\}\\ &\leq \frac{k}{\varepsilon} \sup\{(1 - |z|^2)^{\beta} |f'(\phi(z))| : z \in \Omega_{\varepsilon}\}\\ &= \frac{k}{\varepsilon} ||f \circ \phi||_{\beta} = \frac{k}{\varepsilon} ||C_{\phi}(f)||_{\beta} \preceq \frac{k}{\varepsilon} ||C_{\phi}(f)||. \end{split}$$

Conversely, suppose that C_{ϕ} is bounded below on B_{β} , that is, C_{ϕ} is bounded below on B_0 . Then there is k > 0 such that for any $f \in B_0$ with $||f||_{\beta} = 1$, $\sup\{(1 - |z|^2)^{\beta}|(f \circ \phi)'(z)| : z \in D\} \ge k$. Then $(1 - |z_f|^2)^{\beta}|(f \circ \phi)'(z_f)| \ge \frac{k}{2}$ for some $z_f \in D$. Since $(1 - |z_f|^2)^{\beta}|f'(\phi(z_f))| \ge \frac{k}{2}$ because $|\phi'(z_f)|^{1-\beta} \le 1$. Then $G_{\varepsilon} = \phi(\{z_f : f \in B_0 \text{ with } ||f|| = 1\})$ is a sampling set for B_{β} .

COROLLARY 2.5. Suppose $\beta \geq 0$ and $|\phi'(z)|^{1-\beta}$ is bounded. Then C_{ϕ} is bounded below on B_{β} if and only if there is $\varepsilon > 0$ and there is Ω_{ε} such that $\phi(\Omega_{\varepsilon})$ is a sampling set for B_{β} .

In Theorem 2.4, let $\Omega_{\varepsilon} = \{z \in D : |\tau_{\phi}^{\beta}(z)| \geq \frac{k}{2}\}$. Then $\phi(\Omega_{\varepsilon})$ is a sampling set for B_{β} . We want to find some condition which makes the following statement true : G_{ε} is a sampling set for B_{β} .

A subset H of D is said to satisfy the reverse Carleson condition if there is c > 0 such that $\int_{H} |f(z)|^{p} dA(z) \ge c \int_{D} |f(z)|^{p} dA(z)$ for all $f \in L_{a}^{p}$.

LEMMA 2.6. For $\beta \ge 0$ and $a \in D$, $|\phi'_a(z)|^\beta \le \left(\frac{2}{1-|a|}\right)^\beta$.

Proof. Since $\phi'_a(z) = \frac{-1 + |a|^2}{(1 - \overline{a}z)^2}$, $1 - |a|^2 \le |\phi'_a(z)| \le \frac{2}{1 - |a|}$. This completes the proof.

THEOREM 2.7. Suppose $H \subset D$ satisfies the reverse Carleson condition and $\beta \geq 1$. Then H is a sampling set for B_{β} .

Proof. Suppose $f \in B_0$ and $||f||_{\beta} = 1$. Take any a in D. Then

$$\begin{split} \int_{D} \left((1 - |z|^2)^{\beta} |f'(z)| \right)^{\beta} (1 - |a|^2)^{\beta^2} dA(z) \\ &\leq \int_{D} \left((1 - |z|^2)^{\beta} |f'(z)| \right)^{\beta} |\phi_a'(z)|^{\beta^2} dA(z) \\ &\leq c \int_{H} \left((1 - |z|^2)^{\beta} |f'(z)| \right)^{\beta} |\phi_a'(z)|^{\beta^2} dA(z) \\ &\leq c ||f|_{H} ||_{\beta}^{\beta} \int_{D} |\phi_a'(z)|^{\beta^2} dA(z) \\ &\leq c ||f|_{H} ||_{\beta}^{\beta} \left(\frac{1}{1 - |a|} \right)^{\beta^2}. \end{split}$$

 $\text{Thus } ||f||_{\beta} \preceq \Big(\frac{1}{1-|a|}\Big)^{2\beta^2} ||f|_H||_{\beta}, \text{that is, } ||f||_{\beta} \text{ is dominated by } ||f|_H||_{\beta}.$

COROLLARY 2.8. Suppose $|\phi'(z)|^{1-\beta}$ is bounded and $1-\beta \ge 0$. (1) C_{ϕ} is bounded below if and only if there is $\varepsilon > 0$ such that G_{ε} is a sampling set for B_{β} .

(2) If there is $\varepsilon > 0$ such that G_{ε} satisfies the reverse Carleson condition then C_{ϕ} is bounded below on B_{β} .

Let E_{γ} denote the space of analytic functions f on D such that $||f||_{E_{\gamma}}$ = $\sup_{z \in D} (1 - |z|^2)^{\gamma} ||U_z^{\alpha} f||_{2 + \frac{\alpha}{2} - \gamma}$ is finite. We notice that for $f \in B_{2 + \frac{\alpha}{2} - \gamma}$ = B_{β} , $||f||_{E_{\gamma}} \leq ||f||_{\beta}$ (see [3]).

PROPOSITION 2.9. If $\frac{3+\alpha}{2} \ge \beta = 2 + \frac{\alpha}{2} - \gamma$ then the inclusion function is a bounded linear operator from B_{β} into E_{γ} .

$$\begin{aligned} &Proof. \text{ Take any } f \text{ in } B_{\beta}. \text{ Then} \\ &||f||_{E_{\gamma}} = \sup_{z \in D} (1 - |z|^{2})^{\gamma} ||U_{z}^{\alpha}f||_{\beta} \\ &= \sup_{z \in D} (1 - |z|^{2})^{\gamma} \sup_{w \in D} (1 - |w|^{2})^{\beta} |(U_{z}^{\alpha}f)'(w)| \\ &= \sup_{z \in D} (1 - |z|^{2})^{\gamma} \sup_{w \in D} (1 - |w|^{2})^{\beta} \\ &\times \left| f'(\varphi_{z}(w))\varphi'_{z}(w) \frac{(1 - |z|^{2})^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}w)^{2 + \alpha}} + f(\varphi_{z}(w))(2 + \alpha)\overline{z} \frac{(1 - |z|^{2})^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}w)^{3 + \alpha}} \right| \\ &= \sup_{z \in D} (1 - |z|^{2})^{\gamma} \sup_{w \in D} (1 - |\varphi_{z}(w)|^{2})^{\beta} \\ &\times \left| f'(w)\varphi'_{z}(\varphi_{z}(w)) \frac{(1 - |z|^{2})^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}\varphi_{z}(w))^{2 + \alpha}} + f(w)(2 + \alpha)\overline{z} \frac{(1 - |z|^{2})^{1 + \frac{\alpha}{2}}}{(1 - \overline{z}\varphi_{z}(w))^{3 + \alpha}} \right| \\ &\leq \sup_{z \in D} (1 - |z|^{2})^{\gamma} \sup_{w \in D} \frac{(1 - |z|^{2})^{\beta}(1 - |w|^{2})^{\beta}}{|1 - \overline{z}w|^{2\beta}} \\ &\times \left| |f'(w)| \frac{|1 - \overline{z}w|^{2}}{1 - |z|^{2}} \frac{|1 - \overline{z}w|^{2 + \alpha}}{(1 - |z|^{2})^{1 + \frac{\alpha}{2}}} + (2 + \alpha) \frac{||f||_{\beta}}{(1 - |w|^{2})^{\beta - 1}} \frac{|1 - \overline{z}w|^{3 + \alpha}}{(1 - |z|^{2})^{2 + \frac{\alpha}{2}}} \right| \\ &\leq \sup_{z \in D} (1 - |z|^{2})^{\gamma} \sup_{w \in D} (1 - |z|^{2})^{\beta} ||f||_{\beta} |1 - \overline{z}w|^{-2\beta} \\ &\times \left\{ \frac{|1 - \overline{z}w|^{4 + \alpha}}{(1 - |z|^{2})^{2 + \frac{\alpha}{2}}} + (2 + \alpha) \frac{|1 - \overline{z}w|^{3 + \alpha}}{(1 - |z|^{2})^{2 + \frac{\alpha}{2}}} \right\} \\ &= \sup_{z \in D} (1 - |z|^{2})^{\gamma + \beta - 2 - \frac{\alpha}{2}} ||f||_{\beta} \sup_{w \in D} |1 - \overline{z}w|^{-2\beta + 3 + \alpha} (|1 - \overline{z}w| + 2 + \alpha) \\ &\leq 2^{-2\beta + 3 + \alpha} (4 + \alpha) ||f||_{\beta}. \end{aligned}$$

Here the 5th inequality equivalence comes from $|f(w)| \preceq \frac{||f||_{\beta}}{\left(1-|w|^2\right)^{\beta-1}}$.

That is, $||f||_{E_{\gamma}} \leq ||f||_{\beta}$. Thus the inclusion function is a bounded linear operator.

THEOREM 2.10. If $\gamma = 2 + \frac{\alpha}{2} - \beta \ge \frac{1}{2}$ and $|\phi'(z)|^{1-\beta}$ is bounded on *D* then the composition operator $C_{\phi}: B_{\beta} \to E_{\gamma}$ is a bounded linear operator.

Proof. Notice that for any g in B_{β} , $||g||_{E_{\gamma}} \leq ||g||_{\beta}$ (see [3]). Take any f in B_{β} . Then $||C_{\phi}(f)||_{E_{\gamma}}$

$$= ||f \circ \phi||_{E_{\gamma}}$$

$$= \sup_{z \in D} (1 - |z|^{2})^{\gamma} ||U_{z}^{\alpha}(f \circ \phi)||_{\beta}$$

$$\leq \sup_{z \in D} (1 - |z|^{2})^{\gamma} ||f \circ \phi||_{\beta}$$

$$= \sup_{z \in D} (1 - |z|^{2})^{\gamma} \sup_{w \in D} (1 - |w|^{2})^{\beta} |f'(\phi(w))| |\phi'(w)|$$

$$= \sup_{z \in D} (1 - |z|^{2})^{\gamma} \sup_{w \in D} \tau_{\phi}^{\beta}(w) (1 - |\phi(w)|^{2})^{\beta} |f'(\phi(w))| |\phi'(z)|^{1-\beta}$$

$$\leq \sup_{z \in D} (1 - |z|^{2})^{\gamma} ||f||_{\beta}$$

Thus $C_{\phi}: B_{\beta} \to E_{\gamma}$ is a bounded linear operator.

COROLLARY 2.11. If $\gamma = 2 + \frac{\alpha}{2} - \beta \ge \frac{1}{2}$ and $|\phi'(z)|^{1-\beta}$ is bounded on *D* then the composition operator $C_{\phi} : B_{\beta} \to B_{\beta}$ is a bounded linear operator.

Proof. If follows from the fact that $||f \circ \phi||_{\beta} \leq ||f||_{\beta}$ for all $f \in B_{\beta}$.

THEOREM 2.12. Suppose ϕ is a holomorphic self-map of D, $\gamma = 2 + \frac{\alpha}{2} - \beta \geq \frac{1}{2}$ and $|\phi'(z)|^{1-\beta}$ is bounded on D. If for any $\varepsilon > 0$ there is r such that 0 < r < 1 and $\tau_{\phi}^{\beta}(z) < \varepsilon$ whenever $|\phi(z)| > r$ then $C_{\phi}: B_{\beta} \to E_{\gamma}$ is a compact operator.

Proof. Suppose (f_n) is a bounded sequence in B_β and converges to 0 uniformly on compact subsets of D. Let $M = \sup_{n \in \mathbb{N}} ||f_n||$ and $K = \sup_{z \in D} |\phi'(z)|^{1-\beta}$, where $||f|| = ||f||_\beta + |f(0)|$. Take any $\varepsilon > 0$. By the

assumption, there is r such that 0 < r < 1 and for $|\phi(z)| > r$, $\tau_{\phi}^{\beta}(z) < \frac{\varepsilon}{2MK}$. Note that $(1 - |w|^2)^{\beta} |f'(\phi(w))| |\phi'(w)| \leq \tau_{\phi}^{\beta}(w)(1 - |\phi(w)|^2)^{\beta} |f'(\phi(w))| |\phi'(w)|^{1-\beta} \leq \tau_{\phi}^{\beta}(w) ||f||_{\beta},$

 $f_n \circ \phi(0) \to 0$ and there is k such that for $n \ge k$, $(1 - |w|^2)^{\beta} |(f_n \circ \phi)'(w)| < \frac{\varepsilon}{2}$ whenever $|\phi(w)| \le r$. Hence $||f_n \circ \phi||_{E_{\gamma}} \to 0$ as $n \to \infty$. Thus C_{ϕ} is compact.

References

- Ghatage, J. Yan and D. Zheng, Composition Operators with closed range on the Bloch space, Proc. Amer. Math. Soc., 129 (2000), 2039-2044.
- [2] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amet. Math. Soc. 347 (1995), 2679-2687.
- [3] S. H. Kang, Toeplitz Operators on Bloch-type spaces and A Generalization of Bloch-Type Spaces, J. of the CHUNGCHEONG Math. Soc., 27(3) (2014), 439-454.
- [4] K. Zhu, Bloch Type Spaces of Analytic Functions, Rocky Mountain Journal of Math. 23(3) (1993), 1143-1177.

Si Ho Kang Department of Mathematics, Sookmyung Women's University, Seoul 140-742, Korea. E-mail: shkang@sookmyung.ac.kr