• Title/Summary/Keyword: Blast Slag Powder

Search Result 264, Processing Time 0.025 seconds

The properties of High Performance Concrete Using Fly Ash and Blast-Furnace Slag (플라이애쉬 및 고로슬래그를 사용한 고성능콘크리트의 특성)

  • 이승한;정용욱;박정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.275-280
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. By the results of this experiment, fluidity on W/C=34% was satisfied within slump-flow 65$\pm$5cm and U-type self-compacting difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

Evaluation of the Fluidity and Compressive Strength of Mortar Containing High Volume Blast Furnace Slag by Replacement Ratio of Lightweight Fine Aggregate (경량잔골재 치환율에 따른 고로슬래그 대량사용 모르타르의 유동성 및 압축강도 평가)

  • Kim, Do-Bin;Kim, Young-Uk;Kim, Sung-Jin;Kim, Jeong-Hyeon;Ban, Jun-Mo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.208-209
    • /
    • 2017
  • This study analyzed the fluidity and strength properties of mortar containing high volume blast furnace slag by replacement ratio of lightweight fine aggregate for reducing the unit weight of concrete structures.

  • PDF

A Study on the Strength Performance According to Blast Slag Replacement of Fireproof Mortar using Oyster Shell Aggregate (굴 패각을 골재로 사용한 내화 모르타르 바인더의 고로슬래그 치환율에 따른 강도성능에 관한 연구)

  • Heo, Min-Hoe;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.75-76
    • /
    • 2017
  • In the case of B / a 1: 3, the intensity when the substitution rate increased to 15% showed a tendency to decrease, but it turned out that the strength increased at the substitution rate of 20%. In the case of B / a 1: 4 and 1: 5, it was found that when the substitution rate at the substitution rate of 10% was the highest and the substitution rate increased further, the strength was reduced. However, since the test body does not exist at the age of 3 days and the age of 7 days at the substitution rate of 0%, there is no specimen, so blast furnace slag binder substitution for increasing strength of refractory mortar is judged to be meaningless.

  • PDF

Setting Properties of GGBS Powder According to Replacement of Ratio of CaO-Al2O3 Based Inorganic Binder (CaO-Al2O3계 무기결합재 사용량에 따른 고로슬래그 미분말의 응결특성)

  • Choi, Duck-Jin;Lee, Young-Jae;Choi, Se-Jin;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.78-79
    • /
    • 2013
  • As a part of study to maximize the amount used of the ground granulated blast-furnace slag, the study deals with setting properties of paste that is mixed the ground granulated blast-furnace slag with CaO-Al2O3 based inorganic blinder. The results of the experiment show that the setting time is most fast in the mix of 25% rate of CaO-Al2O3 based inorganic blinder. It is generally needed 2 hours for work time in precast concrete products. In this study, this requirement is achieved when using the retarder of 0.5%.

  • PDF

Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber

  • Kim, Daehyeon;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.361-368
    • /
    • 2019
  • This study aims to evaluate the applicability of a grout material that is mixed with carbon fiber, biogrout, ground granulated blast furnace slag (GGBS) powder and cement. Uniaxial compressive strength tests were performed on homo-gel samples at days of 1, 3, 7, 14 and 28. In addition, the variation of permeability with the mixing ratios was measured. Based on the uniaxial compressive strength test, it was confirmed that the uniaxial compressive strength increased by 1.2times when carbon fiber increased by 1%. In addition, as a result of the permeability test, it was found that when the GGBS increased by 20%, the permeability coefficient decreased by about 1.5times. Therefore, the developed grout material can be used as a cutoff grouting material in the field due to its strength and cut-off effect.

The Characteristics of Blastfurnace Slag Blended Cement with Low Blaine Slag Powder (저 분말도 슬래그를 사용한 슬래그 시멘트의 특성)

  • 변승호;최현국;김재영;송종택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.19-24
    • /
    • 1998
  • In this study, blended cement with low blaine(2000, 3000$\textrm{cm}^2$/g) blast-furnace slag power by 10-70wt.% was investigated through the measurement hydration heat, physical properties. The experiment results indicated compressive strength was decreased as low blaine slag blended, but hydration heat was reduced significantly and flow of the cement paste was increased.

  • PDF

A Study on Hydration Properties of Recycled Cement Mortar using Admixture Materials (혼화재료를 혼입한 재생시멘트 모르터의 수화특성에 관한 연구)

  • Park, Cha-Won;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.79-86
    • /
    • 2004
  • The purpose of this study was the development of a recycling process to recover the hydraulic properties of hydration products which account for a large proportion of cementitious powder from concrete waste. This process was performed to recycle cementitious powder as recycle cement. Therefore, after the theoretical consideration of the properties of recycle process of recycled aggregates and cementitious powder, we investigated the hydraulic properties of cementitious powder under various temperature conditions in hardened mortar which was modeled on concrete waste. And we analyzed properties of chemical reactions of recycled cement with admixture materials such as Fly-Ash, Blast Furnace Slag As a result of the experiment, the most effective method to recover hydraulic properties of the cementitious powder from concrete waste was condition of burning at 700℃ for 120 minute. And it is shown that the fluidity of mortar was decreased rapidly when the burning temperature of recycle cement was increased. However, the compressive strength and fluidity were improved significantly when admixture materials such as Fly-Ash or Blast Furnace Slag was added.

The Particle Size distribution of Cement Binder and Rheological Properties of Paste (시멘트 혼합재의 입도분포와 페이스트 유동특성)

  • Yoo, Dong-Woo;Choi, Hyun-Kook;Lee, Seung-Heun;Lee, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.103-111
    • /
    • 2011
  • This study examined rheological properties of blast furnace slag and ash paste that are widely used as cement concrete for mineral admixture in current. In that way rheological properties of the paste of mineral admixture only was examined. The result of this study were as follow: In order to analyze that the rheological properties of the mineral admixture only, fine particles were produced with grinding machine to 3 particle sizes. These powders in general from the result of comparison with and analysis of rheological properties and the coefficient n and De values. The result that ash powder was higher in plastic viscosity and yield stress than Slag powder, and with the same n value, ash powder showed higher plastic viscosity and yield stress than Slag powder. But Slag powder in particle size distribution showed a sensitive tendency on changing in rheological properties.

  • PDF

The Corrosion Appearance of Mortar by The Sulfuric-Acid (황산에 의한 모르타르의 침식현상)

  • 이웅종;정연식;양승규;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.43-48
    • /
    • 2002
  • This study is experiment results that carried out the sulfuric acid immersion of the mortar containing blast furnace slag powder, based ell the mechanism of the sulfuric acid corrosion for concrete which was caused by the H$_2$S gas. The used materials is OPC, slag powder and gypsum, and the proportion of cement is total 13 levels which are 0~70% of the contents of slag, 0~6% of the contents of gypsum. The specimen is immersed by 5% H$_2$SO$_4$ solution after 28 days and its weight loss is measured at intervals of 7 days. The results of experiment showed that the substitution ratio of 70% slag was excellent at a point of view for the sulfuric acid resistance and the sulfuric acid resistance was not improved by tile increase of the blaine of slag(8, 000longrightarrow10, 000$\textrm{cm}^2$/g) and the addition of gypsum.

  • PDF

Effects of Waste Refractory Powder and Desulfurization Gypsum as Activator on the Properties of High Volume Blast Furnace Slag Mortar with Illite (자극제로서 폐내화물 및 탈황석고가 일라이트 및 고로슬래그 다량 치환 모르타르의 물성에 미치는 영향)

  • Yun, Weon-Keun;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.185-191
    • /
    • 2017
  • The objective of this paper is to investigate the effect of waste refractory powder(WRP) and desulfurization gypsum(FGD) as activators on the flow properties and the strength development of high volume blast furnace slag mortar incorporating illite(BSM) having adsorption and deodorization. To fabricate the BSMs with 60% of W/B, blast furnace slag are incorporated with 45% and 65%, respectively. WRP and FGD are substituted from 5 to 10%. Test results indicate that the flow is decreased with increase of WRP and FGD, while increase of WRP and FGD enhance the compressive strength due to accelerated reaction of blast furnace slag, The use of illite results in a decrease of compressive strength. pH has increasing tendency until 7days, while it has reduction. In this paper, optimal dosages of WRP and FGD are believed to be around 5% each.