• Title/Summary/Keyword: Axial magnetic field

Search Result 169, Processing Time 0.023 seconds

The usability of the image according to the frequency encoding gradient direction conversion in fixation using the non magnetic metal screw (비 자성 금속 screw를 이용한 고정술에서 주파수 부호화 경사 방향 변환에 따른 영상의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag;Park, Cheol-So
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Because of causing the geometrical transformation of the magnetic field, the patient implementing the fixation using the nonmagnetic metal screw causes the magnetic susceptibility artifact at an image. Thus, in this research, the distortion measure of the image according to the frequency oblique direction conversion tried to be compared in the magnetic susceptibility artifact occurence. First, the itself phantom inserting the nonmagnetic metal screw of the titanium component was made and the region of interest was set up and the frequency oblique direction the anterior - back side was converted to the right-to-left direction in the axial image and a right-to-left was converted to the upper side - bottom side in the coronal plane and the upper - bottom side was converted to the anterior - back side in the sagittal plane and the distortion measure of the region of interest was compared, it observed. In a result, when converting the frequency oblique direction, the distortion difference of the region of interest could be confirmed and it is considered to enhance the diagnostics efficiency changing the oblique direction appropriately.

A Study on the Magnetic Properties of Ion Irradiated Cu/Co Multilayer System

  • Kim, T.Y.;Chang, G.S.;Son, J.H.;Kim, S.H.;Shin, S.W.;Chae, K.H.;Sung, M.C.;Lee, J.;Jeong, K.;Lee, Y.P.;;Whang, C.N
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.163-163
    • /
    • 2000
  • In this research, we used the ion irradiation technique which has an advantae in improving intentionally the properties of surface and interface in a non-equilibrium, instead of the conventional annealing method which has been known to improve the material properties in the equilibrium stat. Cu/Co multilayered films were prepared on SiN4/SiO2/Si substrates by the electron-beam evaporation for the Co layers and the thermal evaporation for the Cu layers in a high vacuum. The ion irradiation with a 80keV Ar+ was carried out at various ion doses in a high vacuum. Hysteresis loops of the films were investigated by magneto-optical polar Kerr spectroscopy at various experimental conditions. The change of atomic structure of the films before and after the ion irradiation was studied by glancing angle x-ray diffraction, and the intermixing between Co and Cu sublayers was confirmed by Rutherford backscattering spectroscopy. The surface roughness and magneto-resistance were measured by atomic force microscopy and with a four-point probe system, respectively. During the magneto-resistance measurement, we changed temperature and the direction of magnetization. From the results of experiments, we found that the change at the interfaces of the Cu/Co multilayered film induced by ion irradiation cause the change of magnetic properties. According to the change in hysteresis loop, the surface inplane component of magnetic easy axis was isotropic before the ion irradiation, but became anisotropic upon irradiation. It was confirmed that this change influences the axial behavior of magneto-resistance. Especially, the magneto-resistance varied in accordance with an external magnetic field and the direction of current, which means that magneto-resistance also shows the uniaxial behavior.

  • PDF

A spectral domain analysis of microstrip lines using a residue theorem (유수정리를 이용한 마이크로스트립 선로의 스펙트럼 영역 해석)

  • 문병귀;진경수;박병우
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.8-15
    • /
    • 1998
  • An analysis of the microstripline is started as an assumption of the axial & transveral current distribution. Applying the boundary conditions to the scalar wave equations of a electric & magnetic potential, the two simultaneous coupled integral equations are produced. The electronmagnetic fields in microstrip line can be obtained by solving these two coupled integral equaltion. In general, either a numerical analysis method or a Galerkin method was used to solve them. In this paper, a residue theorem is proposed to solve them. The electromagnetic fields are expressed as integral equations for LSE and LSM mode in the spectral domain. Applying a residue theorem to the Fourier transformed equation and Fourier inverse transformed equation which is necessary for interchanging the space domain and the spectral domain, the electromagnetic fields are expressed as algebraic equations whichare relatively easier to handle. the distributions of the electromagnetic field are shown at the range of -5w/2.leq.x.leq.5w/2, 0.lep.y.leq.4h for z=0. It agrees well with the results of the Quasi-TEM mode analysis.

  • PDF

Simulation of High-Power Magnetron Oscillators Using a MAGIC3D Code (MAGIC3D 코드를 애용한 고출력 마그네트론 발진기의 시뮬레이션)

  • Jung, S.S.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.538-543
    • /
    • 2006
  • A high-Power continuous-wave (CW) ten-vane double-strapped magnetron oscillator has been investigated using three-dimensional (3D) particle-in-cell (PIC) numerical simulation code, MAGIC3D. The resonant modes and their resonant frequencies of the ten-vane strapped magnetron resonator were obtained to show a large mode separation near the ${\pi}$-mode. An electron cloud formed in an anode-cathode gap, called an interaction space was confined well enough to result in no leakage current. Five spokes were clearly observed in the electron cloud, which definitely ensured the ${\pi}$-mode oscillation in the ten-vane magnetron. Numerical simulations predicted that the saturated microwave output power measured at the coaxial output port was 5.41 kW at the microwave frequency of 893 MHz, corresponding to a power conversion efficiency of 72.6% when the external axial magnetic field was 1150 gauss and the electron beam voltage and current were 6 kV and 1.25 A, respectively.

Computations of Losses and Temperatures in the Core Ends of a High Voltage Turbo-generator

  • Liu Yujing;Hjarne Stig
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.299-305
    • /
    • 2005
  • The work described in this paper is to investigate the additional iron losses and consequent temperatures in core ends of a turbo-generator wound with high voltage cables. Electromagnetic calculations are made with 3D FE models, which include the lamination material with anisotropic properties both in magnetic permeability and electric conductivity. The models also include the geometry of the stator teeth and eventually the axial steps designated to reduce the core end losses. The 3D model of the rotor consists of field windings with straight in-slot parts and end windings. The thermal models are simplified into two dimensions and include the heat sources dumped from the 3D electromagnetic solutions. The influences of power factor on additional iron losses are studied for this cable wound machine and conventional machines. The calculation results show that the additional iron losses can be reduced to about $15\%$ by introducing some small steps around the airgap corner of core ends.

EFFECT OF POROSITY ON THE TRANSIENT MHD GENERALIZED COUETTE FLOW WITH HEAT TRANSFER IN THE PRESENCE OF HEAT SOURCE AND UNIFORM SUCTION AND INJECTION

  • Attia, Hazem Ali;Ewis, Karem Mahmoud;Awad-Allah, Nabil Ahmed
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.125-135
    • /
    • 2012
  • The transient magnetohydrodynamic (MHD) generalized Couette flow with heat transfer through a porous medium of an electrically conducting, viscous, incompressible fluid bounded by two parallel insulating porous plates is studied in the presence of uniform suction and injection and a heat source considering the Hall effect. A uniform and constant pressure gradient is imposed in the axial direction and an externally applied uniform magnetic field as well as a uniform suction and injection are applied in the direction perpendicular to the plates. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the Hall current, the porosity of the medium and the uniform suction and injection on both the velocity and temperature distributions is investigated.

Design of In-Wheel Type Switched Reluctance Motor for Electric Vehicle Traction and Wireless Charging (전기자동차 트랙션 및 무선 충전용 인휠타입 스위치드 릴럭턴스 전동기 설계)

  • Lukman, Grace Firsta;Son, Dong-Ho;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1866-1872
    • /
    • 2017
  • This paper presents the design of in-wheel type Switched Reluctance Motor (SRM) which can be used as both traction motor and power pickup device in a wireless charging system of electric vehicles. The SRM acts as a traction drive in driving mode and a power receiver in charging mode to avoid any additional weights. Double stator axial field SRM is used due to its structure that can be mounted inside the wheel. The charging circuit is integrated with the asymmetric converter and phase windings of SRM, reducing the cost and size of the system. Magnetic resonance is implemented to increase the efficiency. Simulations done in Maxwell and Simplorer verify the effectiveness of the proposed system.

Tensile Strain Characteristics of Critical Current in YBCO Coated Conductors (YBCO CC테이프 임계전류의 인장변형률 특성)

  • Shin, Hyung-Seop;Kim, Ki-Hyun;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.274-275
    • /
    • 2005
  • The tensile strain dependency of critical current in YBCO coated conductors was examined at 77K and in the self magnetic field. A commercially available YBCO sample with Cu stabilizer layer was supplied. There existed a peak in the relation between the Ie and tensile strain, and the reversible variation of $I_c$ with applied tensile strain was found. In the neutral axis Ni alloy RABiTS-$Y_2O_3$/YSZ/$CeO_2$ buffered YBCO tape, the $I_c$ recovered reversibly until the applied strain reached to about 0.5%, representing that a significant residual compressive strain induced during cooling to 77 K influenced the axial strain tolerance of YBCO conductors. To investigate the strain and stress influence on the $I_c$, the stress-strain characteristics of YBCO conductors measured at 77 K were discussed.

  • PDF

Implementation of a High Power Backward Wave Oscillator on Electron Beam Diode Structure Improvement (전자빔 다이오드 구조개선에 의한 대전력 후진파발진기의 구현)

  • Kim, Won-Sop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.897-903
    • /
    • 2009
  • We have designed the backward wave oscillator. A power-pulsed generator oscillated at 24 GHz has higher frequency than current one. It is very inportant to prevent microwave from going into the beam diode, since intence microwave will harmfully affect beam generation. Due to the axial mode operation, there exist a critial value of beam energy for the oscillation. By changing the condition at the SWS end, an enhanced performance of the K-band oversized BWO is observed in a low magnetic field region about 0.8T.

Multi-axial Force Characteristics of Radial Electrodynamic Wheel (래디알 동전기 휠의 다축력 특성)

  • Jung, Kwangsuk
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • The rotating electrodynamic wheel over a conductive plate produces thrust force as well as normal force. Specially, separating the conductive plate and spacing apart each part, the lateral stability of the rotating wheel is guaranteed due to the restoring force into neutral position. In this paper, the force characteristics of the electrodynamic wheel rotating over the conductive plate is analyzed using the finite element tool. First, the dominant parameters are identified considering the geometric configuration and the operating condition. And the sensitivity for the parameter deviation is quantified for the high force density. The above topology can be applied as an actuating principle for inter-city train as well as contact-free transfer device.