• Title/Summary/Keyword: Artificial intelligence program

Search Result 332, Processing Time 0.04 seconds

The Effect of Design Thinking Based Artificial Intelligence Education Programs on Middle School Students' Creative Problem Solving Ability

  • Seung-Ju, Hong;Seong-Won, Kim;Youngjun, Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.227-234
    • /
    • 2023
  • In this paper, we developed a design thinking-based artificial intelligence education program for middle school students and applied it to verify the impact on creative problem-solving skills. The inspection tool used the Creative Problem Solving Profile Inventory (CPSPI), an inspection tool for measuring creative thinking type ability based on the CPS theory of Hwasun Lee, Jungmin Pyo, Insoo Choe(2014). CPSPI included the steps of evaluating cognitive preferences and cognitive abilities by supplementing the limitations of existing tests, and sharing and persuading one's ideas with others. Before and after applying the design thinking-based artificial intelligence education program, as a result of analyzing the creative problem-solving ability, it increased significantly in all areas. As a result of analyzing the creative problem-solving ability of middle school students, significant results were found in the areas of Problem Detection and Analysis, Idea Generation, Action plan, Execution, Persuasion and Communication. The effect of design thinking was confirmed as a teaching and learning method to improve creative problem-solving ability in artificial intelligence education.

The Effects of Artificial Intelligence Convergence Education using Machine Learning Platform on STEAM Literacy and Learning Flow

  • Min, Seol-Ah;Jeon, In-Seong;Song, Ki-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.199-208
    • /
    • 2021
  • In this paper, the effect of artificial intelligence convergence education program that provides STEAM education using machine learning platform on elementary school students' STEAM literacy and learning flow was analyzed. A homogeneous group of 44 elementary school 6th graders was divided into an experimental group and a control group. The control group received 10 lessons of general subject convergence class, and the experimental group received 10 lessons of STEAM-based artificial intelligence convergence education using Machine learning for Kids. To develop the artificial intelligence convergence education program, the goals, achievement standards, and content elements of the 2015 revised curriculum to select subjects and class contents is analyzed. As a result of the STEAM literacy test and the learning flow test, there was a significant difference between the experimental group and the control group. In particular, it can be confirmed that the coding environment in which the artificial intelligence function is expanded has a positive effect on learners' learning flow and STEAM literacy. Among the sub-elements of convergence talent literacy, significant differences were found in the areas of personal competence such as convergence and creativity. Among the sub-elements of learning flow, significant differences were found in the areas such as harmony of challenge and ability, clear goals, focus on tasks, and self-purposed experiences. If further expanded research is conducted in the future, it will be a basic research for more effective education for the future.

Teacher Training Program and Analysis of Teacher's Demands to Strengthen Artificial Intelligence Education (인공지능교육 역량 강화를 위한 교원 연수 프로그램과 교사 요구분석)

  • Jeon, In-Seong;Jun, Soo-Jin;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.4
    • /
    • pp.279-289
    • /
    • 2020
  • The purpose of this study is to apply the training program for teachers to strengthen the competence of artificial intelligence education in primary and secondary school teachers and to analyze its effectiveness and analyze teachers' demands for artificial intelligence education to provide basic research data. The referenced training program was designed based on the ADDIE model by selecting the educational contents based on the five core elements of AI, and teachers from the G Metropolitan Office of Education and the AI Education Research Association collaborated to develop the program. The effectiveness of the developed program and questionnaire of teacher needs analysis for AI teaching were examined for content validity. As a result of the training conducted by applying the developed program, satisfaction with each curriculum of the training and the possibility of application to the field were highly evaluated. It was found that teachers consider the need of teaching unplugged activities for AI education and basic AI experiences in elementary school level, and AI education contents including block programming languages and physical computing activities are needed to teach in middle school level.

AI Education Programs for Deep-Learning Concepts (딥러닝 개념을 위한 인공지능 교육 프로그램)

  • Ryu, Miyoung;Han, SeonKwan
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2019
  • The purpose of this study is to develop an educational program for learning deep learning concepts for elementary school students. The model of education program was developed the deep-learning teaching method based on CT element-oriented teaching and learning model. The subject of the developed program is the artificial intelligence image recognition CNN algorithm, and we have developed 9 educational programs. We applied the program over two weeks to sixth graders. Expert validity analysis showed that the minimum CVR value was more than .56. The fitness level of learner level and the level of teacher guidance were less than .80, and the fitness of learning environment and media above .96 was high. The students' satisfaction analysis showed that students gave a positive evaluation of the average of 4.0 or higher on the understanding, benefit, interest, and learning materials of artificial intelligence learning.

Development of Test Tool of Attitude toward Artificial Intelligence for Middle School Students (중학생의 인공지능에 대한 태도 검사 도구 개발)

  • Kim, Seong-Won;Lee, Youngjun
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.3
    • /
    • pp.17-30
    • /
    • 2020
  • Although the importance of Artificial Intelligence(AI) education is increasing, research on the development of test tools has not been conducted in AI education research in Korea has not been conducted. Accordingly, there is a limit to designing AI curriculum and analyzing the effect of the educational program. So, in this study, Test tool was developed that to measure the attitude toward artificial intelligence of middle school students. For the development of test tools, the objectives, components, factors, and test tools were developed through the discussion of AI education experts. The test tool was finally developed by item analysis, exploratory factor analysis and confirmatory factor analysis. Finally, the criteria of the developed test tool were analyzed. Future research is needed to analyze the effects of educational programs and to analyze factors affecting attitudes toward artificial intelligence in middle school students using developed test tools.

Implementation of Artificial Intelligence Speech Recognition Text Repository for Elementary Career Counseling (초등 진로 상담을 위한 인공지능 음성 인식 텍스트 레포지토리 구현)

  • Yu, Minjeong;Ma, Youngji;Koo, Dukhoi
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.327-333
    • /
    • 2021
  • Currently development of the Artificial Intelligence technology is rapidly progressing in the era of the Fourth Industrial Revolution. The government is trying to improve the education of Artificial Intelligence and cultivating human resources. However there are very few cases where A.I technology is actually used in public education classes. Therefore we designed a text repository by implementing A.I speech recognition to provide career counseling for elementary school students. In the meantime, there have been many difficulties in giving advance consultations required for students' career counseling. In this study we suggested A.I speech recognition technology which can solve addressed problem and we planned various ways to make the program more educational. To conclude we expect A.I technology implemented in this study provides effective solution to career counseling.

  • PDF

An AI-Based Prevention Program to Protect Youth from Cybergrooming

  • Kee Jeong Kim;Lifu Huang;Jin-Hee Cho
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.67-73
    • /
    • 2023
  • The Digital Age calls for improvement of information literacy particularly among children and youth who are vulnerable to cybergrooming. Taking an interdisciplinary approach by leveraging our team's expertise including child and adolescent development, data analytics, and cybersecurity, this study proposes an interactive artificial intelligence (AI)-based preventive simulation program that raises youth knowledge and awareness about the risk of cybergrooming as well as increases resilient self-efficacy in their cybersecurity-relevant skills. The primary purpose of this project is to evaluate the effectiveness of the simulation program on preventing cybergrooming. More specifically, this study is designed to examine developmental changes in self-efficacy of cybersecurity-relevant skills among youth participants as a function of the preventive simulation program. Further, this study will identify risk and protective factors that explain interindividual differences in the ability of children and youth either to fall victim to advances from a cyber predator or to recognize and deter such threats. The preliminary data will help improve the effectiveness of the preventive simulation program as well as the methods of implementation to large groups of youth. The findings from the proposed study will contribute to making specific recommendations to parents, educators, practitioners, and policy makers for the prevention of cybergrooming.

Digital color practice using Adobe AI intelligence research on application method - Focusing on color practice through Adobe Sensei - (어도비 AI 지능을 활용한 디지털 색채 실습에 관한 적용방식 연구 -쎈쎄이(Adobe Sensei)을 통한 색채 실습을 중심으로-)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.801-806
    • /
    • 2022
  • In the modern era, the necessity of color capability in the digital era is the demand of the era, and research on improving color practice on the subdivided digital four areas that are not in the existing practice is needed. For digital majors who are difficult to solve in existing paint color practice, classes in digital color practice in four more specialized areas are needed, and the use of efficient artificial intelligence was studied for classes in digitized color and color sense. In this paper, we tried to show the expansion of the color practice area by suggesting digital color practice and color matching method based on Photoshop artificial intelligence and big data technology that existing color and color matching were practice that only CMYK could do. In addition, based on the color quantification data of individual users provided by the latest Adobe Sceney program artificial intelligence, the purpose of the practice was to improve learners' predictions of actual color combinations and random colors using filter effects. In conclusion, it is a study on the use of programs that eliminate ambiguity in the mixing process of existing paint practice, secure digital color details, and propose a practical method that can provide effective learning methods for beginners and intermediates to develop their senses through artificial intelligence support. The Adobe program practice method necessary for coloration and main color through theoretical consideration and improvement of teaching skills that are better than existing paint practice were presented.

Lightweight Attention-Guided Network with Frequency Domain Reconstruction for High Dynamic Range Image Fusion

  • Park, Jae Hyun;Lee, Keuntek;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.205-208
    • /
    • 2022
  • Multi-exposure high dynamic range (HDR) image reconstruction, the task of reconstructing an HDR image from multiple low dynamic range (LDR) images in a dynamic scene, often produces ghosting artifacts caused by camera motion and moving objects and also cannot deal with washed-out regions due to over or under-exposures. While there has been many deep-learning-based methods with motion estimation to alleviate these problems, they still have limitations for severely moving scenes. They also require large parameter counts, especially in the case of state-of-the-art methods that employ attention modules. To address these issues, we propose a frequency domain approach based on the idea that the transform domain coefficients inherently involve the global information from whole image pixels to cope with large motions. Specifically we adopt Residual Fast Fourier Transform (RFFT) blocks, which allows for global interactions of pixels. Moreover, we also employ Depthwise Overparametrized convolution (DO-conv) blocks, a convolution in which each input channel is convolved with its own 2D kernel, for faster convergence and performance gains. We call this LFFNet (Lightweight Frequency Fusion Network), and experiments on the benchmarks show reduced ghosting artifacts and improved performance up to 0.6dB tonemapped PSNR compared to recent state-of-the-art methods. Our architecture also requires fewer parameters and converges faster in training.

  • PDF

Factors Affecting Nursing Students' Confidence in Performing Nursing using Artificial Intelligence (간호대학생의 인공지능 활용 간호수행 자신감에 영향을 미치는 요인)

  • Ji-Hye Seo;Eun-Young Jung;Jeong-Hyeon Kong
    • Journal of the Health Care and Life Science
    • /
    • v.11 no.2
    • /
    • pp.181-189
    • /
    • 2023
  • The purpose of this study is a descriptive research study to identify factors affecting nursing students' confidence in performing nursing using artificial intelligence and provide evidence for the development of nursing education programs. Data collected from 245 nursing students were conducted using descriptive statistics, t-test, one way ANOVA, Pearson correlation coefficient, and multiple regression analysis using SPSS/WIN 21.0 program. The reliability of the tool was verified using Cronbach's alpha coefficient. As a result of the study, knowledge of artificial intelligence was 2.52 points, awareness was 3.52 points, attitude of acceptance was 3.74 points, and confidence in nursing performance was 5.47 points. The factors affecting confidence in performing nursing using artificial intelligence were knowledge and attitude, with an explanatory power of 50.8%. Based on the results of this study, basic data can be provided for the development of related curriculum and teaching methods in the future.