오늘날 문자의 도입과 함께 시작되는 학교대수는 초등수학에서 중등수학으로의 이행에서 가장 큰 장애요인이 되고 있다. 이는 산술과 차별화된 대수의 본질에 기인하는 것으로, 문자와 식, 방정식에서의 구문론적 측면을 강조하는 것만으로 해결 될 수 없다. 이에 최근 학교대수와 관련된 연구에서는 대수적 사고에 대한 논의가 집중적으로 다루어지고 있다. 본 연구는 대수적 사고 요소를 분석하여 산술에서 대수로의 이행과 초기 대수지도과정을 개선하기 위한 방안을 탐색해본 것이다. 먼저 역사-발생적, 인식론적, 기호-언어학적 관점으로부터 학교대수에서 요구되는 대수적 사고를 분석하고, 이로부터 형식 불역의 원리를 비롯하여 변수 개념과 양적인 추론, 대수적인 해석-식 세우기, 변환추론-식의 변형, 연산감각-식의 조작 등을 핵심적인 대수적 사고 요소로 확인한다. 그리고 초등학교와 중학교 수학 교과서를 분석하고 학생들을 대상으로 한 대수적 사고 능력 검사와 면담을 실시하고, 이를 토대로 학교수학에 포함된 대수적 사고 요소를 살펴본다. 또한 초등학교 수학에서부터 대수적 사고 요소를 강조함으로써 대수 입문기에 해당하는 중학교 이후의 대수 학습에 대한 준비와 더불어 대수적 사고 요소에 초점을 맞춘 산술에서 대수로의 이행을 이끌어내기 위한 지도 방안을 탐색해본다.
Deep comprehension of basic mathematical notions and concepts is a basic condition of a successful teaching. Some elements of algebraic thinking belong to the elementary school mathematics. The question "What stays the same and what changes?" link arithmetic problems with algebraic conception of variable. We have studied beliefs and comprehensions of future elementary school mathematics teachers on early algebra. Pre-service teachers from three academic pedagogical colleges deal with mathematical problems from the pre-algebra point of view, with the emphasis on changes and invariants. The idea is that the intensive use of non-formal algebra may help learners to construct a better understanding of fundamental ideas of arithmetic on the strong basis of algebraic thinking. In this article the study concerning arithmetic series is described. Considerable number of pre-service teachers moved from formulas to deep comprehension of the subject. Additionally, there are indications of ability to apply the conception of change and invariance in other mathematical and didactical contexts.
산술은 학교수학의 기초가 되기 때문에 학생들의 계산 숙달의 측면을 넘어서 산술적 사고 수준을 신장시키는 방향으로 의미 있게 지도되어야 한다. 이에, 본 연구에서는 임미인, 장혜원(2017b)에서 개발한 산술적 사고 수준 검사 도구를 활용하여 초등학교 5학년 100명을 대상으로 산술적 사고 수준을 분석하였다. 분석 결과, 100명 중 82명이 산술적 사고의 1수준, 15명이 2수준에 해당하고, 0수준, 3수준, 4수준에 해당하는 학생이 각 1명인 것으로 나타났다. 이는 초등학교 고학년에 해당하는 5학년 학생들의 산술적 사고 수준이 일반적인 예상보다 낮음을 보여 주는 결과이다. 따라서, 높은 비율을 보인 1수준, 2수준 학생들이 지니는 산술적 사고의 특징, 오류 유형 등을 분석하고, 그에 대한 논의로부터 초등 수학에서 학생들의 산술적 사고 수준을 신장시키는 것에 관한 유의미한 시사점을 도출하였다.
산술 지도 시 산술적 사고의 측면을 강조해야 한다는 데에 다수의 동의가 있어왔음에도 불구하고, 국내에서 산술적 사고 자체에 주목한 연구는 찾아보기 어렵다. 산술적 사고에 초점을 맞춘 지도를 위해서는 산술적 사고의 의미와 요소를 면밀히 분석할 필요가 있다. 본 연구에서는 산술적 사고의 의미와 요소를 파악하기 위해 문헌 분석을 실시하였고, 산술적 사고의 요소를 추출하기 위한 이차적인 방법으로 전문가 델파이 조사를 실시하여 종합적으로 산술적 사고의 요소를 추출하였다. 연구 결과, 내용적 사고로서 산술적 사고의 의미를 파악하고, 수 관련 5가지, 연산 관련 11가지, 공통 요소 2가지로 총 18가지의 산술적 사고 요소를 추출하였다.
In this paper, we deal with the algebraic thinking from the perspective of ‘process’ and ‘object’ aspects. Generally, mathematical concepts have come from the concrete process. We consider the origin of algebra as the arithmetic calculations. Also, the concept of school arithmetic is beginning from actions or procedures. However, in order to develop the alge- braic thinking and to apply this thinking, we have to see the history of algebraic thinking, and find this duality. Next we investigate various researches relating to the ‘process-object duality’. Theses studies suppose that the concept formation and thinking process should be stared from the process-object duality. Finally, we reinterprete many difficulties in algebra - equals sign, variables, algebraic expressions, and linear equations, the principle of permanence of form- from the perspective of the process-object duality.
The mathematical thinking which transforms important mathematical content and developed into mathematical structure is a vital process in building up mathematical ability as mathematical knowledge based on structure. Such process based on students' recognition of mathematical concept. Developing mathematical thinking into mathematical structure happens when different cognitive units are connected and compressed to form schema of solution, which could happen through some guided problems. The effort of arithmetic approach in problem solving did not necessarily provide students the structure schema of solution. The using of equation to solve the problem is based on the schema of building equation, and is not necessary recognizing the structure of the solution, as the recognition of structure may be lost in the process of simplification of algebraic expressions, leaving only the final numeric answer of the problem.
Generally school algebra is to start with introducing variables and algebraic expressions, which have major cognitive obstacles to students in the transfer from arithmetic to algebra. But the recent studies in the teaching school algebra argue the algebraic thinking from an early algebraic point of view. We compare the Korean elementary mathematics textbooks with Americans from this perspective. First, we discuss the history of school algebra in the school curriculum. And Second, we investigate the recent studies in relation to early algebra. We clarify the goals of this study(the importance of early algebra in the elementary school) through these discussions. Next we examine closely the number sense in the arithmetic and the symbol sense in the algebra. And we conclude that the operation sense can connect these senses within early algebra using the algebraic thinking. Finally, we compare the elementary mathematics books between Korean and American according to the components of the operation sense. In this comparative study, we identify a possibility of teaching algebraic thinking in the elementary mathematics and early algebra can be introduced to the elementary mathematics textbooks from aspects of the operation sense.
수와 연산은 초등수학에서 가장 기본이고 핵심이면서도 학생들이 많은 어려움을 겪는 영역으로 알려져 왔다. 이와 같은 학습의 어려움은 계산 방법이나 계산 기능의 측면을 강조하는 것만으로는 근본적인 해결이 어렵고, 관련 사고의 측면에서 검토할 필요가 대두된다. 본 연구는 Guberman(2014)에 기초하여 수와 연산 영역 부진 학생의 산술적 사고 수준 및 산술에 대한 이해 정도를 분석하여 산술에 관한 어려움의 원인을 진단하고 그에 대한 처방 방안을 모색하는 것을 목적으로 한다. 이를 위해 수학 학습 중 유독 수와 연산 영역에서만 어려움을 보이는 한 초등학교 6학년 학생을 대상으로 두 차례에 걸쳐 산술적 사고 수준 및 산술 개념 이해 검사를 실시하고 학생의 반응을 분석하는 사례 연구를 실시하였다. 분석 결과, 연구 대상 학생의 산술적 사고는 Guberman의 1수준에 해당하며 몇 가지 산술 개념과 관련하여 이해에 어려움을 지니고 있음이 파악되었다. 분석 결과 및 그에 대한 논의로부터 구체적인 처방 방안을 제시하였다.
In this paper we consider the equality sign as a mathematical concept and investigate its meaning, errors made by students, and subject matter knowledge of mathematics teacher in view of The Model of Mathematic al Concept Analysis, arithmetic-algebraic thinking, and some examples. The equality sign = is a symbol most frequently used in school mathematics. But its meanings vary accor ding to situations where it is used, say, objects placed on both sides, and involve not only ordinary meanings but also mathematical ideas. The Model of Mathematical Concept Analysis in school mathematics consists of Ordinary meaning, Mathematical idea, Representation, and their relationships. To understand a mathematical concept means to understand its ordinary meanings, mathematical ideas immanent in it, its various representations, and their relationships. Like other concepts in school mathematics, the equality sign should be also understood and analysed in vie w of a mathematical concept.
Recently, there are studies the argument that arithmetic rules established by the four fundamental arithmetic operations, in other words, commutative laws, associative laws, distributive laws, should be explicitly described in mathematics textbooks and the curriculum. These rules are currently implicitly presented or omitted from textbooks, but they contain important principles that foster mathematical thinking. This study aims to evaluate the current level of understanding of these computation rules and provide implications for the curriculum and textbook writing. To this end, the correct answer ratio of the five arithmetic rules for 1-4 grades 398 in five elementary schools was investigated and the type of error was analyzed and presented, and the subject to learn these rules and the points to be noted in teaching and learning were also presented. These results will help to clarify the achievement criteria and learning contents of the calculation rules, which were implicitly presented in existing national textbooks, in a new 2022 revised curriculum.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.