• Title/Summary/Keyword: Approximated Optimization

Search Result 121, Processing Time 0.018 seconds

ON LINEARIZED VECTOR OPTIMIZATION PROBLEMS WITH PROPER EFFICIENCY

  • Kim, Moon-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.685-692
    • /
    • 2009
  • We consider the linearized (approximated) problem for differentiable vector optimization problem, and then we establish equivalence results between a differentiable vector optimization problem and its associated linearized problem under the proper efficiency.

  • PDF

An Evaluation of the Second-order Approximation Method for Engineering Optimization (최적설계시 이차근사법의 수치성능 평가에 관한 연구)

  • 박영선;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.236-247
    • /
    • 1992
  • Optimization has been developed to minimize the cost function while satisfying constraints. Nonlinear Programming method is used as a tool for the optimization. Usually, cost and constraint function calculations are required in the engineering applications, but those calculations are extremely expensive. Especially, the function and sensitivity analyses cause a bottleneck in structural optimization which utilizes the Finite Element Method. Also, when the functions are quite noisy, the informations do not carry out proper role in the optimization process. An algorithm called "Second-order Approximation Method" has been proposed to overcome the difficulties recently. The cost and constraint functions are approximated by the second-order Taylor series expansion on a nominal points in the algorithm. An optimal design problem is defined with the approximated functions and the approximated problem is solved by a nonlinear programming numerical algorithm. The solution is included in a candidate point set which is evaluated for a new nominal point. Since the functions are approximated only by the function values, sensitivity informations are not needed. One-dimensional line search is unnecessary due to the fact that the nonlinear algorithm handles the approximated functions. In this research, the method is analyzed and the performance is evaluated. Several mathematical problems are created and some standard engineering problems are selected for the evaluation. Through numerical results, applicabilities of the algorithm to large scale and complex problems are presented.presented.

Design Optimization of the Air Bearing Surface for the Optical Flying Bead (Optical Flying Head의 Air Bearing Surface 형상 최적 설계)

  • Lee Jongsoo;Kim Jiwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.303-310
    • /
    • 2005
  • The systems with probe and SIL(Solid Immersion Lens) mechanisms have been researched as the technology to perform NFR(Near Field Recording). Most of them use the flying head mechanism to accomplish high recording density and fast data transfer rate. In this paper, ABS shape of flying head was optimized with the object of securing the maximum compliance ability of OFH. We suggest low different optimization processes to predict the static flying characteristics for the OFH. Two different approximation methods, regression analysis and back propagation neural network were used. And we compared the result of directly connected(between CAE and optimizer) method and two approximated optimization results. Design Optimization Tool(DOT) and ${\mu}GA$ were used as the optimizers.

Optimization for PSC Box Girder Bridges Using Design Sensitivity Analysis (설계 민감도 해석을 이용한 PSC 박스거더교의 최적설계)

  • 조선규;조효남;민대홍;이광민;김환기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.205-210
    • /
    • 2000
  • An optimum design algorithm of PSC box girder bridges using design sensitivity analysis is proposed in this paper. For the efficiency of the proposed algorithm, approximated reanalysis techniques using design sensitivity analysis are introduced. And also to save the numerical efforts, an efficient reanalysis technique through approximated structural responses is proposed. A design sensitivity analysis of structural response is executed by automatic differentiation(AD). The efficiency and robustness of the proposed algorithm, compared with conventional algorithm, is successfully demonstrated in the numerical example.

  • PDF

An Efficient Dynamic Response Optimization Using the Design Sensitivities Approximated Within the Estimate Confidence Radius

  • Park, Dong-Hoon;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1143-1155
    • /
    • 2001
  • In order to reduce the expensive CPU time for design sensitivity analysis in dynamic response optimization, this study introduces the design sensitivities approximated within estimated confidence radius in dynamic response optimization with ALM method. The confidence radius is estimated by the linear approximation with Hessian of quasi-Newton formula and qualifies the approximate gradient to be validly used during optimization process. In this study, if the design changes between consecutive iterations are within the estimated confidence radius, then the approximate gradients are accepted. Otherwise, the exact gradients are used such as analytical or finite differenced gradients. This hybrid design sensitivity analysis method is embedded in an in-house ALM based dynamic response optimizer, which solves three typical dynamic response optimization problems and one practical design problem for a tracked vehicle suspension system. The optimization results are compared with those of the conventional method that uses only exact gradients throughout optimization process. These comparisons show that the hybrid method is more efficient than the conventional method. Especially, in the tracked vehicle suspension system design, the proposed method yields 14 percent reduction of the total CPU time and the number of analyses than the conventional method, while giving similar optimum values.

  • PDF

Sea surface temperature estimation from remote measurement of the thermal radiation

  • Mima, Kazuhiko;Satoh, Makoto;Moriyama, Masao;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.12-15
    • /
    • 1994
  • To establish the sea surface temperature estimation scheme for the upcoming advanced remote sensor, the quasi-analytical solution of the approximated radiative transfer equation which express the radiative transfer process of the radiant energy radiated from the sea surface to the satellite is approximated into the non-linear equation. To solve the simultaneous approximated radiative transfer equation which express the radiative transfer process of the radiant energy radiated from the sea surface to the satellite is approximated into the nonlinear equation. To solve the simultaneous approximated radiative transfer equation at each channel, the constrained non-linear optimization technique is adopted. To define the coefficients of the approximated radiative transfer equation and the constraints, the satellite detected radiance and the total transmittance are computed from the 1350 kinds of simulated atmosphere / surface models via radiative transfer code. The verification from the simulated data show the sufficient result.

  • PDF

Study on the Airfoil Shape Design Optimization Using Database based Genetic Algorithms (데이터베이스 기반 유전 알고리즘을 이용한 효율적인 에어포일 형상 최적화에 대한 연구)

  • Kwon, Jang-Hyuk;Kim, Jin;Kim, Su-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.58-66
    • /
    • 2007
  • Genetic Algorithms (GA) have some difficulties in practical applications because of too many function evaluations. To overcome these limitations, an approximated modeling method such as Response Surface Modeling(RSM) is coupled to GAs. Original RSM method predicts linear or convex problems well but it is not good for highly nonlinear problems cause of the average effect of the least square method(LSM). So the locally approximated methods. so called as moving least squares method(MLSM) have been used to reduce the error of LSM. In this study, the efficient evolutionary GAs tightly coupled with RSM with MLSM are constructed and then a 2-dimensional inviscid airfoil shape optimization is performed to show its efficiency.

A Study on the Comparison of Performances Between Direct Method and Approximation Method in Structural Optimization (구조최적설계시 직접법 및 근사법 알고리즘의 성능 비교에 관한 연구)

  • 박영선;이상헌;박경진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.313-322
    • /
    • 1994
  • Structural optimization has been developed by two methods. One is the direct method which applies the Nonlinear Programming (NLP) algorithm directly to the structural optimization problem. This method is known to be very excellent mathematically. However, it is very expensive for large-scale problems due to the one-dimensional line search. The other method is the approximation method which utilizes the engineering senses very well. The original problem is approximated to a simple problem and an NLP algorithm is adopted for solving the approximated problems. Practical solutions are obtained with low cost by this method. The two methods are compared through standard structural optimization problems. The Finite element method with truss and beam elements is used for the structural and sensitivity analyses. The results are analyzed based on the convergence performances, the number is function calculations, the quality of the cost functions, and etc. The applications of both methods are also discussed.

Estimation Method of the Best-Approximated Form Factor Using the Profile Measurement of the Aspherical Ophthalmic Lens (단면 형상 측정을 이용한 비구면 안경 렌즈의 최적 근사화된 설계 계수의 추정 방법)

  • Lee Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.55-62
    • /
    • 2005
  • This paper presents mainly a procedure to get the mathematical form of the manufactured aspherical lens. Generally Schulz formula describes the aspherical lens profile. Therefore, the base curvature, conic constant. and high-order polynomial coefficient should be set to get the approximated design equation. To find the best-approximated aspherical form, lens profile is measured by a commercial stylus profiler, which has a sub-micrometer measurement resolution. The optimization tool is based on the minimization of the root mean square of error sum to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the lens refractive power measurement shows the experimental consistency with the curvature distribution of the best-approximated aspherical surface equation