ON LINEARIZED VECTOR OPTIMIZATION PROBLEMS WITH PROPER EFFICIENCY

  • Kim, Moon-Hee (Department of Multimedia Engineering, Tongmyong University)
  • Published : 2009.05.31

Abstract

We consider the linearized (approximated) problem for differentiable vector optimization problem, and then we establish equivalence results between a differentiable vector optimization problem and its associated linearized problem under the proper efficiency.

Keywords

References

  1. T. Antczak, A new approach to multiobjective programming with a modified objective function, J. Global Optimization 27 (2003), 485-495. https://doi.org/10.1023/A:1026080604790
  2. T. Antczak, An $\eta$-approximation approach for nonlinear mathematical programming problems involving invex functions, Num. Functional Anal. Optimization 25 (2004), 423-438. https://doi.org/10.1081/NFA-200042183
  3. T. Antczak, An $\eta$-approximation method in nonlinear vector optimization, NonlinearAnalysis 63 (2005), 225-236.
  4. J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkauser, Boston, 1990.
  5. M.R. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming; Theory and Algorithms, second edition, John Wiley & Sons Inc., New York, 1993.
  6. F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
  7. L.N. Das and S. Nanda, Proper efficiency conditions and duality for multiobjective pro- gramming problems involving semilocally invex functions, Optimization 34 (1995), 43-51. https://doi.org/10.1080/02331939508844092
  8. J. Dutta, On generalized pre-invex functions, Asia-Pacific J. Oper. Res. 18 (2001), 257-272.
  9. A. M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl. 22 (1968), 618-630. https://doi.org/10.1016/0022-247X(68)90201-1
  10. M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), 545-550. https://doi.org/10.1016/0022-247X(81)90123-2
  11. H. Isermann, Proper efficiency and linear vector maximum problem, Oper. Res. 22 (1974), 189-191. https://doi.org/10.1287/opre.22.1.189
  12. V. Jeyakumar and B. Mond, On generalised convex mathematical programming, J. Austral. Math. Soc. Ser. B 34 (1992), 43-53.
  13. D. S. Kim, Multiobjective fractional programming with a modified objective function, Commun. Korean Math. Soc. 20 (2005), 837-847. https://doi.org/10.4134/CKMS.2005.20.4.837
  14. M.H. Kim, On optimality and duality for multiobjective optimization problems, Thesis for the Degree of Master of Science, February 1999.
  15. Lun Li and Jun Li, Equivalence and existence of weak Pareto optima for multiobjective optimization problems with cone constraints, Appl. Math. Lett. 21 (2008), 599-606. https://doi.org/10.1016/j.aml.2007.07.012
  16. O.L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.
  17. Marko M. Makela and Pekka Neittaanmaki, Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control, World Scientific Publishing Co. Pte. Ltd., 1992.
  18. Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Academic Press, New York, 1985.
  19. T. Weir, B. Mond, B.D. Craven, On duality for weakly minimized vector valued optimization, Optimization 17 (1986), 711-721. https://doi.org/10.1080/02331938608843188