• Title/Summary/Keyword: Analysis method

Search Result 81,004, Processing Time 0.085 seconds

Adaptive Finite Element Analysis of 2-D Plane Problems Using the R-P version (R-P법에 의한 이차원 평면문제의 적응 유한요소 해석)

  • Chung, Sang-Wook;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.345-350
    • /
    • 2000
  • Adaptive finite element analysis, which its solution error meets with the user defined allowable error, is recently used far improving reliability of finite element analysis results. This adaptive analysis is composed of two procedures; one is the error estimation of an analysis result and another is the reconstruction of finite elements. In the rp-method, an element size is controlled by relocating of nodal positions(r-method) and the order of an element shape function is determined by the hierarchical polynomial(p-method) corresponding to the element solution error. In order to show the effectiveness and accuracy of the suggested rp-method, various numerical examples were analyzed and these analysis results were examined by comparing with those obtained by the existed methods. As a result of this study, following conclusions are obtained. (1) rp-method is more accurate and effective than the r- and p-method. (2) The solution convergency of the rp-method is controlled by means of the iterative calculation numbers of the r- and p- method each other.

  • PDF

Design Sensitivity Analysis and Topology Optimization Method for Power Flow Analysis at High Frequency (고주파수대역에서 파워흐름해석법을 이용한 구조물의 설계민감도 해석과 위상최적설계)

  • 박찬영;박영호;조선호;홍석윤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.119-126
    • /
    • 2004
  • A continuum-based design sensitivity analysis and topology optimization methods are developed for power flow analysis. Efficient adjoint sensitivity analysis method is employed and further extended to topology optimization problems. Young's moduli of all the finite elements are selected as design variables and parameterized using a bulk material density function. The objective function and constraint are an energy compliance of the system and an allowable volume fraction, respectively. A gradient-based optimization, the modified method of feasible direction, is used to obtain the optimal material layout. Through several numerical examples, we notice that the developed design sensitivity analysis method is very accurate and efficient compared with the finite difference sensitivity. Also, the topology optimization method provides physically meaningful results. The developed is design sensitivity analysis method is very useful to systematically predict the impact on the design variations. Furthermore, the topology optimization method can be utilized in the layout design of structural systems.

  • PDF

Analysis of Magnetic Field and Thrust in Slotless Permanent Magnet Linear Synchronous Motor using 3D Space Harmonic Analysis Method (3차원 공간고조파법을 이용한 슬롯리스형 영구자석 선형 동기전동기의 자계 및 추력특성 해석)

  • Lee, Ju-Min;Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.255-262
    • /
    • 2001
  • This paper deals with characteristic analysis method of the slotless type Permanent Magnet Linear Synchronous Motor(PMLSM) using the space harmonic method. Analysis models of the PM and the armature current are described by the magnetization configurations taking into account the 2D and 3D distribution. In 3D analysis, the thrust and normal force can be calculated more accurately, because it can consider the z component flux density which is impossible in 2D analysis. In order to verify the validity of the proposed method, the results of the analytic method are compared with not only the experimental ones but ones of Finite Element Method(FEM).

  • PDF

The Estimation of the Floor Vibration in Structure for Application of Response Spectrum Analysis Method (응답스펙트럼 해석법을 이용한 건축 구조물의 바닥진동해석)

  • 이동근;김태호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.169-178
    • /
    • 1998
  • In general, the response spectrum analysis method is widely used for seismic analysis of building structures, and the time history analysis is applied for computation of structural vibration caused by equipments, machines and moving loads, etc. However, compared with the response spectrum analysis method, the time history method is very complex, difficult and time consuming. In this study, the maximum responses for the vertical vibration are calculated conveniently by the response spectrum method. At first, Response spectrum and time history analysis for some earthquake excitations are carried out, and the accuracy of maximum displacements obtained from response spectrum analysis is investigated. Secondly, the process for the response spectrum analysis in excitation is calculated, and the maximum modal responses are combined by CQC method. Finally, results of the proposed method are compared with those of the time history analysis.

  • PDF

The Analysis of the Seepage Quantity of Reservoir Embankment using Stochastic Response Surface Method (확률론적 응답면 기법을 이용한 저수지 제체의 침투수량 해석)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Choi, Woo-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.75-84
    • /
    • 2013
  • The seepage quantity analysis of reservoir embankment is very important for assessment of embankment safety. However, the conventional analysis does not consider uncertainty of soil properties. Permeability is known that the coefficient of variation is larger than other soil properties and seepage quantity is highly dependent on the permeability of embankment. Therefore, probabilistic analysis should be carried out for seepage analysis. To designers, however, the probabilistic analysis is not an easy task. In this paper, the method that can be performed probabilistic analysis easily and efficiently through the numerical analysis based commercial program is proposed. Stochastic response surface method is used for approximate the limit state function and when estimating the coefficients, the moving least squares method is applied in order to reduce local error. The probabilistic analysis is performed by LHC-MCS through the response surface. This method was applied to two type (homogeneous, core zone) earth dams and permeability of embankment body and core are considered as random variables. As a result, seepage quantity was predicted effectively by response surface and probabilistic analysis could be successfully implemented.

Long and Short Wave Radiation and Correlation Analysis Between Downtown and Suburban Area(II) - Study on Correlation Analysis Method of Radiation Data - (도심부와 교외지역의 장·단파 복사와 상관도 분석 (II) - 관측 자료의 상관도 분석기법에 관한 연구 -)

  • Choi, Dong-Ho;Lee, Bu-Yong;Oh, Ho-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.101-110
    • /
    • 2013
  • The propose of this study is to understand the phenomenon of radiation and comparison of analysis of two methods. One is analysis method of same-time data and the another is analysis method of rank data. We confirmed that two methods of correlation analysis had the effectiveness and suitability. The followings are main results from this study. 1) The seasonal correlation coefficient of long and short-wave radiation is higher in winter than in summer because of high humidity in the summer season can makes easily cloud in the sky locally. 2) According to analysis method, there is big difference in correlation coefficient from 0.494(Analysis method of same-time data) to 0.967(Analysis method of rank data) with short-wave radiation by the location during summer. These results have significant value in solar radiation research and analysis. It has explored a new way for solar radiation research of analysis method as well.

An Approximate Method for the Buckling Analysis of a Composite Lattice Rectangular Plate

  • Kim, Yongha;Kim, Pyunghwa;Kim, Hiyeop;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.450-466
    • /
    • 2017
  • This paper defines the modified effective membrane stiffness, bending stiffness considering the directionally dependent mechanical properties and mode shape function of a composite lattice rectangular plate, which is assumed to be a Kirchhoff-Love plate. It subsequently presents an approximate method of conducting a buckling analysis of the composite lattice rectangular plate with various boundary conditions under uniform compression using the Ritz method. This method considers the coupled buckling mode as well as the global and local buckling modes. The validity of the present method is verified by comparing the results of the finite element analysis. In addition, this paper performs a parametric analysis to investigate the effects of the design parameters on the critical load and buckling mode shape of the composite lattice rectangular plate based on the present method. The results allow a database to be obtained on the buckling characteristics of composite lattice rectangular plates. Consequently, it is concluded that the present method which facilitates the calculation of the critical load and buckling mode shape according to the design parameters as well as the parametric analysis are very useful not only because of their structural design but also because of the buckling analysis of composite lattice structures.

A Study on Dynamic Response Analysis Algorithm for Three Dimensional Structure (3차원 구조물의 동적응답 해석알고리즘에 관한 연구)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.637-642
    • /
    • 2000
  • This paper suggests new analysis algorithm for tile dynamic response of three dimensional structure which is frequently found in pipe line system of plant by the combination of the transfer stiffness coefficient method(TSCM) and Newmark method. Presented analysis algorithm for dynamic response can improve the computational accuracy remarkably owing to advantages of tile TSCM in comparison of transfer matrix method(TMM). Analysis system was modeled as a lumped mass system in this mettled. The analysis algorithm for dynamic response was formulated for the three dimensional structure. The validity of the this method is demonstrated through the results of numerical experiment for simple computational model by the TSCM and TMM.

  • PDF

Technical efficiency of the coastal composite fishery in Korea: a comparison of data envelopment analysis and stochastic frontier analysis

  • Kim, Do-Hoon;Seo, Ju-Nam;Lee, Sang-Go
    • The Journal of Fisheries Business Administration
    • /
    • v.41 no.3
    • /
    • pp.45-58
    • /
    • 2010
  • This study estimated the technical efficiency of coastal composite fishery in Korea by using the data envelopment analysis (DEA) and the stochastic frontier analysis (SFA) methods, and the results on the respective method were compared. In the DEA method, the constant returns to scale (CRS) and the variable returns to scale (VRS) output-oriented DEA models were separated and technical efficiencies were estimated, respectively. The average estimated value of technical efficiency by the SFA method (0.633) was found to be lower than that by the VRS-DEA method (0.738), while it was higher than that by the CRS-DEA method (0.479). It was found that strong correlation exists between the SFA method and the VRS-DEA method. The method which can utilize both methods in mutually complementing way for the estimation of technical efficiency was also considered.

Methods of analysis for buildings with uni-axial and bi-axial asymmetry in regions of lower seismicity

  • Lumantarna, Elisa;Lam, Nelson;Wilson, John
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.81-95
    • /
    • 2018
  • Most buildings feature core walls (and shear walls) that are placed eccentrically within the building to fulfil architectural requirements. Contemporary earthquake design standards require three dimensional (3D) dynamic analysis to be undertaken to analyse the imposed seismic actions on this type of buildings. A static method of analysis is always appealing to design practitioners because results from the analysis can always be evaluated independently by manual calculation techniques for quality control purposes. However, the equivalent static analysis method (also known as the lateral load method) which involves application of an equivalent static load at a certain distance from the center of mass of the buildings can generate results that contradict with results from dynamic analysis. In this paper the Generalised Force Method of analysis has been introduced for multi-storey buildings. Algebraic expressions have been derived to provide estimates for the edge displacement ratio taking into account the effects of dynamic torsional actions. The Generalised Force Method which is based on static principles has been shown to be able to make accurate estimates of torsional actions in seismic conditions. The method is illustrated by examples of two multi-storey buildings. Importantly, the black box syndrome of a 3D dynamic analysis of the building can be circumvented.