Formula for the area of a trapezoid is an educational material that can handle algebraic and geometric perspectives simultaneously. In this note, we will make up the expression equivalent algebraically to the formula for the area of a trapezoid, and deal with the conversion of a geometric point of view, in algebraic terms of translating and interpreting the expression geometrically. As a result, the geometric conversion model, the first algebraic model, the second algebraic model are obtained. Therefore, this problem is a good material to understand the advantages and disadvantages of the algebraic and geometric perspectives and to improve the mathematical insight through complementary activity. In addition, these activities can be used as material for enrichment and gifted education, because it helps cultivate a rich perspective on diverse and creative thinking and mathematical concepts.
Let A be an algebra and D a derivation of A. Then D is called algebraic nil if for any $x{\in}A$ there is a positive integer n = n(x) such that $D^{n(x)}(P(x))=0$, for all $P{\in}\mathbb{C}[X]$ (by convention $D^{n(x)}({\alpha})=0$, for all ${\alpha}{\in}\mathbb{C}$). In this paper, we show that any algebraic nil derivation (possibly unbounded) on a commutative complex algebra A maps into N(A), where N(A) denotes the set of all nilpotent elements of A. As an application, we deduce that any nilpotent derivation on a commutative complex algebra A maps into N(A), Finally, we deduce two noncommutative versions of algebraic nil derivations inclusion range.
Journal of the Korea Institute of Information Security & Cryptology
/
v.15
no.6
/
pp.105-110
/
2005
The linearized polynomial fan be regarded as a generalization of the identity function so that the inverse of the linearized polynomial is a generalization of e inverse function. Since the inverse function has so many good cryptographic properties, the inverse of the linearized polynomial is also a candidate of good Boolean functions. In particular, a construction method of vector resilient functions with high algebraic degree was proposed at Crypto 2001. But the analysis about the algebraic degree of the inverse of the linearized Polynomial. Hence we correct the inexact result and give the exact maximal algebraic degree.
In this paper, we carried out a new numerical approach for solving integral algebraic equations with weakly singular kernels. The novel method is based on the construction of B-spline tight framelets using the unitary and oblique extension principles. Some numerical examples are given to provide further explanation and validation of our method. The result of this study introduces a new technique for solving weakly singular integral algebraic equation and thus in turn will contribute to providing new insight into approximation solutions for integral algebraic equation (IAE).
The purpose of the study was to investigate the effectiveness of dynamic software in solving high school analytic geometry problems compared with traditional algebraic approach. Three high school students who have revealed high performance in mathematics were involved in this study. It was considered that they mastered the basic concepts of equations of plane figure and curves of secondary degree. The research questions for the study were the followings: 1) In what degree students understand relationship between geometric approach and algebraic approach in solving geometry problems? 2) What are the difficulties students encounter in the process of using the dynamic software? 3) In what degree the constructions of geometric figures help students to understand the mathematical concepts? 4) What are the effects of dynamic software in constructing analytic geometry concepts? 5) In what degree students have developed the images of algebraic concepts? According to the results of the study, it was revealed that mathematical connections between geometric approach and algebraic approach was complementary. And the students revealed more rely on the algebraic expression over geometric figures in the process of solving geometry problems. The conceptual images of algebraic expression were not developed fully, and they blamed it upon the current college entrance examination system.
Journal of the Korean Society for Nondestructive Testing
/
v.22
no.5
/
pp.545-556
/
2002
Bubble behaviors in two-phase flows have been analyzed by tomography methods such as an algebraic reconstruction technique (ART) and a multiplicative algebraic reconstruction technique (MART). Initially, a bubbly flow and an annular flow have been investigated by cross-sectional view using computer synthesized phantoms. Two tomography methods have been compared to obtain more accurate results of the two-phase flows. Then, reconstruction of three-dimensional density distributions of phantoms with two and three bubbles have been accomplished by the MART method which provided the better results for the two-dimensional reconstructions accurately to analyze the bubble behaviors in the two-phase flow.
This paper deals with Kripke-style semantics for weakening-free non-commutative fuzzy logics. As an example, we consider an algebraic Kripke-style semantics for an extension of the pseudo-uninorm based fuzzy logic HpsUL, $CnHpsUL^*$. For this, first, we recall the system $CnHpsUL^*$, define its corresponding algebraic structures $CnHpsUL^*$-algebras, and algebraic completeness results for it. We next introduce a Kripke-style semantics for $CnHpsUL^*$, and connect it with algebraic semantics.
Across the secondary school, students deal with the algebraic conditions like as identity, inverse, commutative law, associative law and distributive law. The algebraic structures, group, ring and field, are determined by these algebraic conditions. But the conditioning of these algebraic structures are not mentioned at all, as well as the meaning of the algebraic structures. Thus, students is likely to be considered the algebraic conditions as productions from the number sets. In this study, we systematize didactically the meanings of algebraic conditions and algebraic structures, considering connections between the number systems and the solutions of the equation. Didactically systematizing is to construct the model for student's natural mental activity, that is, to construct the stream of experience through which students are considered mathematical concepts as productions from necessities and high probability. For this purpose, we develop the program for the gifted, which its objective is to teach the meanings of the number system and to grasp the algebraic structure conceptually that is guaranteed to solve equations. And we verify the effectiveness of this developed program using didactical experiment. Moreover, the program can be used in ordinary students by replacement the term 'algebraic structure' with the term such as identity, inverse, commutative law, associative law and distributive law, to teach their meaning.
The purpose of this study is to provide the primary sources to improve the problem solving performance by analyzing the errors and the strategies selection of the high school students when solving given algebraic problems. To attain the purpose of this study, the questions for investigation in this study are : 1. What are the differences / similarities in the patterns of errors committed by successful and unsuccessful problem-solvers when solving particular algebraic problems ? 2. What are the error types chosen by unsuccessful problem-solvers when solving particular algebraic problems? 3. Do students utilize checking, either locally or globally, when solving particular algebraic problems? Twenty students were drawn out of 10th grade students in J girls' high school in Yengi -gun, Chung-Nam, for this study. The problem-solving test was used as a test instrument. From the data, the verbal protocols and the written protocols were analyzed by the patterns. The conclusions drawn from the results obtained in the present study are as follows: First, in solving particular algebraic problems, when the problems were solved with one strategy, most students didn't give any consideration to other strategies. So mathematics teachers should teach them to use the various strategies, and should develop the problems to be used the various strategies. Second, in solving particular algebraic problems, errors on notions or transformations of equations were found. Thus, the basic knowledges related to equation should be taught. In addition, most unsuccessful students seleted the strategies inadequately to solve the problems because of misunderstanding the problems. So, to improve the problem solving performance the processes of 'understanding problem' should be emphasized to students. Third, although the unsuccesful students used the 'checking' processes when solving the problems, most of them did not find the errors because of misconceptions related to the problems, carelessness, and unskillfulness of checking. Thus, students must be taught more carefully and encouraged to use the checking.
Many students have experienced difficulties due to the discontinuity in instruction between arithmetic and algebra, and in the field of elementary education, algebra is often treated somewhat implicitly. However, algebra must be learned as algebraic thinking in accordance with the developmental stage at the elementary level through the expansion of numerical systems, principles, and thinking. In this study, algebraic thinking-based classes were developed and conducted for 6th graders in elementary school, and the effect on the ability to solve word-problems in fraction division was analyzed. During the 11 instructional sessions, the students generalized the solution by exploring the relationship between the dividend and the divisor, and further explored generalized representations applicable to all cases. The results of the study confirmed that algebraic thinking-based classes have positive effects on their ability to solve fractional division word-problems. In the problem-solving process, algebraic thinking elements such as symbolization, generalization, reasoning, and justification appeared, with students discovering various mathematical ideas and structures, and using them to solve problems Based on the research results, we induced some implications for early algebraic guidance in elementary school mathematics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.