• Title/Summary/Keyword: Algebraic

Search Result 1,577, Processing Time 0.027 seconds

A study on the conversion of the formula for the area of a trapezoid (사다리꼴 넓이 공식의 변환에 관한 연구)

  • Chung, Young Woo
    • East Asian mathematical journal
    • /
    • v.31 no.2
    • /
    • pp.167-188
    • /
    • 2015
  • Formula for the area of a trapezoid is an educational material that can handle algebraic and geometric perspectives simultaneously. In this note, we will make up the expression equivalent algebraically to the formula for the area of a trapezoid, and deal with the conversion of a geometric point of view, in algebraic terms of translating and interpreting the expression geometrically. As a result, the geometric conversion model, the first algebraic model, the second algebraic model are obtained. Therefore, this problem is a good material to understand the advantages and disadvantages of the algebraic and geometric perspectives and to improve the mathematical insight through complementary activity. In addition, these activities can be used as material for enrichment and gifted education, because it helps cultivate a rich perspective on diverse and creative thinking and mathematical concepts.

THE RANGE INCLUSION RESULTS FOR ALGEBRAIC NIL DERIVATIONS ON COMMUTATIVE AND NONCOMMUTATIVE ALGEBRAS

  • Toumi, Mohamed Ali
    • The Pure and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.243-249
    • /
    • 2013
  • Let A be an algebra and D a derivation of A. Then D is called algebraic nil if for any $x{\in}A$ there is a positive integer n = n(x) such that $D^{n(x)}(P(x))=0$, for all $P{\in}\mathbb{C}[X]$ (by convention $D^{n(x)}({\alpha})=0$, for all ${\alpha}{\in}\mathbb{C}$). In this paper, we show that any algebraic nil derivation (possibly unbounded) on a commutative complex algebra A maps into N(A), where N(A) denotes the set of all nilpotent elements of A. As an application, we deduce that any nilpotent derivation on a commutative complex algebra A maps into N(A), Finally, we deduce two noncommutative versions of algebraic nil derivations inclusion range.

Maximal Algebraic Degree of the Inverse of Linearized Polynomial (선형 다항식의 역원의 maximal 대수적 차수)

  • Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.105-110
    • /
    • 2005
  • The linearized polynomial fan be regarded as a generalization of the identity function so that the inverse of the linearized polynomial is a generalization of e inverse function. Since the inverse function has so many good cryptographic properties, the inverse of the linearized polynomial is also a candidate of good Boolean functions. In particular, a construction method of vector resilient functions with high algebraic degree was proposed at Crypto 2001. But the analysis about the algebraic degree of the inverse of the linearized Polynomial. Hence we correct the inexact result and give the exact maximal algebraic degree.

B-SPLINE TIGHT FRAMELETS FOR SOLVING INTEGRAL ALGEBRAIC EQUATIONS WITH WEAKLY SINGULAR KERNELS

  • Shatnawi, Taqi A.M.;Shatanawi, Wasfi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.363-379
    • /
    • 2022
  • In this paper, we carried out a new numerical approach for solving integral algebraic equations with weakly singular kernels. The novel method is based on the construction of B-spline tight framelets using the unitary and oblique extension principles. Some numerical examples are given to provide further explanation and validation of our method. The result of this study introduces a new technique for solving weakly singular integral algebraic equation and thus in turn will contribute to providing new insight into approximation solutions for integral algebraic equation (IAE).

A Study on the Effectiveness of Dynamic Geometry Software in Solving High School Analytic Geometry Problems. (탐구형 소프트웨어를 활용한 고등학교 해석 기하 교육에 관한 사례 연구)

  • 황우형;차순규
    • The Mathematical Education
    • /
    • v.41 no.3
    • /
    • pp.341-360
    • /
    • 2002
  • The purpose of the study was to investigate the effectiveness of dynamic software in solving high school analytic geometry problems compared with traditional algebraic approach. Three high school students who have revealed high performance in mathematics were involved in this study. It was considered that they mastered the basic concepts of equations of plane figure and curves of secondary degree. The research questions for the study were the followings: 1) In what degree students understand relationship between geometric approach and algebraic approach in solving geometry problems? 2) What are the difficulties students encounter in the process of using the dynamic software? 3) In what degree the constructions of geometric figures help students to understand the mathematical concepts? 4) What are the effects of dynamic software in constructing analytic geometry concepts? 5) In what degree students have developed the images of algebraic concepts? According to the results of the study, it was revealed that mathematical connections between geometric approach and algebraic approach was complementary. And the students revealed more rely on the algebraic expression over geometric figures in the process of solving geometry problems. The conceptual images of algebraic expression were not developed fully, and they blamed it upon the current college entrance examination system.

  • PDF

Comparison and Analysis of Tomography Methods for Reconstruction of Three-dimensional Density Distributions in Two-phase Flows (2상유동장 내 3차원 밀도 분포 재건을 위한 토모그래피 기법의 성능 비교 분석)

  • Ko, Han-Seo;Kim, Yong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.545-556
    • /
    • 2002
  • Bubble behaviors in two-phase flows have been analyzed by tomography methods such as an algebraic reconstruction technique (ART) and a multiplicative algebraic reconstruction technique (MART). Initially, a bubbly flow and an annular flow have been investigated by cross-sectional view using computer synthesized phantoms. Two tomography methods have been compared to obtain more accurate results of the two-phase flows. Then, reconstruction of three-dimensional density distributions of phantoms with two and three bubbles have been accomplished by the MART method which provided the better results for the two-dimensional reconstructions accurately to analyze the bubble behaviors in the two-phase flow.

Algebraic Kripke-style semantics for an extension of HpsUL, CnHpsUL* (CnHpsUL*을 위한 대수적 크립키형 의미론)

  • Yang, Eunsuk
    • Korean Journal of Logic
    • /
    • v.19 no.1
    • /
    • pp.107-126
    • /
    • 2016
  • This paper deals with Kripke-style semantics for weakening-free non-commutative fuzzy logics. As an example, we consider an algebraic Kripke-style semantics for an extension of the pseudo-uninorm based fuzzy logic HpsUL, $CnHpsUL^*$. For this, first, we recall the system $CnHpsUL^*$, define its corresponding algebraic structures $CnHpsUL^*$-algebras, and algebraic completeness results for it. We next introduce a Kripke-style semantics for $CnHpsUL^*$, and connect it with algebraic semantics.

  • PDF

A study on teaching the system of numbers considering mathematical connections (수학적 연결성을 고려한 수 체계의 지도에 관한 연구)

  • Chung, Young-Woo;Kim, Boo-Yoon;Pyo, Sung-Soo
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.473-495
    • /
    • 2011
  • Across the secondary school, students deal with the algebraic conditions like as identity, inverse, commutative law, associative law and distributive law. The algebraic structures, group, ring and field, are determined by these algebraic conditions. But the conditioning of these algebraic structures are not mentioned at all, as well as the meaning of the algebraic structures. Thus, students is likely to be considered the algebraic conditions as productions from the number sets. In this study, we systematize didactically the meanings of algebraic conditions and algebraic structures, considering connections between the number systems and the solutions of the equation. Didactically systematizing is to construct the model for student's natural mental activity, that is, to construct the stream of experience through which students are considered mathematical concepts as productions from necessities and high probability. For this purpose, we develop the program for the gifted, which its objective is to teach the meanings of the number system and to grasp the algebraic structure conceptually that is guaranteed to solve equations. And we verify the effectiveness of this developed program using didactical experiment. Moreover, the program can be used in ordinary students by replacement the term 'algebraic structure' with the term such as identity, inverse, commutative law, associative law and distributive law, to teach their meaning.

Algebraic Problem Solving of the High School Students : An Analysis of Strategies and Errors (고등학교(高等學校) 학생(學生)의 대수(代數) 문제(問題) 해결(解決) : 전략(戰略)과 오류(誤謬) 분석(分析))

  • Lee, Sang-Won;Jeon, Pyung-Kook
    • Communications of Mathematical Education
    • /
    • v.2
    • /
    • pp.181-191
    • /
    • 1997
  • The purpose of this study is to provide the primary sources to improve the problem solving performance by analyzing the errors and the strategies selection of the high school students when solving given algebraic problems. To attain the purpose of this study, the questions for investigation in this study are : 1. What are the differences / similarities in the patterns of errors committed by successful and unsuccessful problem-solvers when solving particular algebraic problems ? 2. What are the error types chosen by unsuccessful problem-solvers when solving particular algebraic problems? 3. Do students utilize checking, either locally or globally, when solving particular algebraic problems? Twenty students were drawn out of 10th grade students in J girls' high school in Yengi -gun, Chung-Nam, for this study. The problem-solving test was used as a test instrument. From the data, the verbal protocols and the written protocols were analyzed by the patterns. The conclusions drawn from the results obtained in the present study are as follows: First, in solving particular algebraic problems, when the problems were solved with one strategy, most students didn't give any consideration to other strategies. So mathematics teachers should teach them to use the various strategies, and should develop the problems to be used the various strategies. Second, in solving particular algebraic problems, errors on notions or transformations of equations were found. Thus, the basic knowledges related to equation should be taught. In addition, most unsuccessful students seleted the strategies inadequately to solve the problems because of misunderstanding the problems. So, to improve the problem solving performance the processes of 'understanding problem' should be emphasized to students. Third, although the unsuccesful students used the 'checking' processes when solving the problems, most of them did not find the errors because of misconceptions related to the problems, carelessness, and unskillfulness of checking. Thus, students must be taught more carefully and encouraged to use the checking.

  • PDF

The effect of algebraic thinking-based instruction on problem solving in fraction division (분수의 나눗셈에 대한 대수적 사고 기반 수업이 문제해결에 미치는 영향)

  • Park, Seo Yeon;Chang, Hyewon
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.281-301
    • /
    • 2024
  • Many students have experienced difficulties due to the discontinuity in instruction between arithmetic and algebra, and in the field of elementary education, algebra is often treated somewhat implicitly. However, algebra must be learned as algebraic thinking in accordance with the developmental stage at the elementary level through the expansion of numerical systems, principles, and thinking. In this study, algebraic thinking-based classes were developed and conducted for 6th graders in elementary school, and the effect on the ability to solve word-problems in fraction division was analyzed. During the 11 instructional sessions, the students generalized the solution by exploring the relationship between the dividend and the divisor, and further explored generalized representations applicable to all cases. The results of the study confirmed that algebraic thinking-based classes have positive effects on their ability to solve fractional division word-problems. In the problem-solving process, algebraic thinking elements such as symbolization, generalization, reasoning, and justification appeared, with students discovering various mathematical ideas and structures, and using them to solve problems Based on the research results, we induced some implications for early algebraic guidance in elementary school mathematics.