Comparison and Analysis of Tomography Methods for Reconstruction of Three-dimensional Density Distributions in Two-phase Flows

2상유동장 내 3차원 밀도 분포 재건을 위한 토모그래피 기법의 성능 비교 분석

  • 고한서 (성균관대학교 기계공학부) ;
  • 김용재 (성균관대학교 대학원 기계공학과)
  • Published : 2002.10.30

Abstract

Bubble behaviors in two-phase flows have been analyzed by tomography methods such as an algebraic reconstruction technique (ART) and a multiplicative algebraic reconstruction technique (MART). Initially, a bubbly flow and an annular flow have been investigated by cross-sectional view using computer synthesized phantoms. Two tomography methods have been compared to obtain more accurate results of the two-phase flows. Then, reconstruction of three-dimensional density distributions of phantoms with two and three bubbles have been accomplished by the MART method which provided the better results for the two-dimensional reconstructions accurately to analyze the bubble behaviors in the two-phase flow.

Algebraic reconstruction technique (ART)과 multiplicative algebraic reconstruction technique (MART)이라는 토모그래피 방법을 이용하여 2상유동에서 기포의 거동을 배침투적으로 분석하였다. 먼저, 컴퓨터 합성 영상장으로 환상유통과 기포유동을 제작하여 2차원 단면의 재건을 시도하였다. 2상유동의 보다 정확한 결과들을 얻기 위하여 두가지 토모그래피 방법이 비교되었다. 그리고, 2상유동에서 기포의 거동을 3차원으로 분석하기 위하여 2개와 3개의 기포가 존재하는 3차원 합성 영상장으로부터 2차원 단면에서 보다 정확한 결과를 보인 MART 재건법에 의해서 밀도 분포 해석을 수행하였다.

Keywords

References

  1. M V. Berry and D. F. Gibbs, 'The Interpretation of Optical Projections', Proc. R. Soc. Lond., Vol. A-314, pp. 143-152. (1970)
  2. H. H. Barret and W. Swindell, 'Analog Reconstruction Methods for Transaxial Tomography', Proc. lEEE, Vol. 65, No. 1, pp. 89-107, (1977)
  3. R. M. Lewitt, 'Reconstruction Algorithms: Transform Methods', Proc. lEEE, Vol. 71, No. 3, pp. 390-408, (1983)
  4. R. J. Santoro, H. G. Semerjian, P. J. Emmerman, and R Goulard, 'Optical Tomography for Flow Field Diagnostics', Int. J. Heat and Mass Transfer, Vol. 24, No. 7, pp. 1139-1150, (1981) https://doi.org/10.1016/0017-9310(81)90163-0
  5. R. Rangayyan, A. P. Dhawan, and R. Gordon, 'Algorithms for Limited-View Computed Tomography: an Annotated Bibliography and a Challenge', Appl. Opt., Vol. 24, No. 3, pp. 4000-4012, (1985) https://doi.org/10.1364/AO.24.004000
  6. R. Gordon, 'A Tutorial on ART', lEEE Trans. on Nuclear Science, Vol. NS-21, pp. 78-92, (1974)
  7. A. C. Kak and M. Slaney, 'Principles of Computerized Tomographic Imaging', lEEE Press, New York, pp. 49-112, (1987)
  8. H. S. Ko, K. Okamoto, and H. Madararme, 'Reconstruction of Transient Three-dimensional Density Distributions Using Digital Speckle Tomography', Meas. Sci. Tech., Vol. 12, No. 8, pp. 1219-1226, (2001) https://doi.org/10.1088/0957-0233/12/8/332
  9. J. R. Partington, 'Physico-Chemical Optics', Vol. IV, An Advanced Treatise on Physical Chemistry, Longmans Green, London, pp. 27-31, (1953)
  10. C. M. Vest, 'Holographic Interferometry', John Wiley & Sons, New York, pp. 64-103, (1979)
  11. H. S. Ko and K. D. Kihm, 'An Extended Algebraic Reconstruction Technique (ART) for Density-Gradient Projections : Laser Speckle Photographic Tomography', Exper. Fluids, Vol. 27, No. 6, pp. 542-550, (1999) https://doi.org/10.1007/s003480050378
  12. N. A. Fomin, 'Speckle Photography for Fluid Mechanics Measurements', Springer, Berlin, pp. 105-146, (1998)
  13. D. Verhoeven, 'Limited-data Computed Tomography Algorithms for the Physical Sciences', Appl. Opt., Vol. 32, No. 20, pp. 3736-3754, (1993) https://doi.org/10.1364/AO.32.003736
  14. K. M. Hanson and G. W. Wecksung, 'Local Basis Function Approach to Computed Tomography', Appl. Opt., Vol. 24, No. 23, pp. 4028-4039, (1985) https://doi.org/10.1364/AO.24.004028
  15. K. D. Kihm, H. S. Ko and D. P. Lyons, 'Tomographic Identification of Gas Bubbles in Two-Phase Flows with the Combined Use of the Algebraic Reconstruction Technique and the Genetic Algorithm', Opt. Lett, Vol. 23, No. 9, pp. 658-660, (1998) https://doi.org/10.1364/OL.23.000658
  16. A J. Decker, 'Tomographic Methods in Flow Diagnostics', NASA Report, No. 106330, (1993)