• Title/Summary/Keyword: A-harmonic function

Search Result 468, Processing Time 0.032 seconds

UNIQUENESS OF SOLUTIONS OF A CERTAIN NONLINEAR ELLIPTIC EQUATION ON RIEMANNIAN MANIFOLDS

  • Lee, Yong Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1577-1586
    • /
    • 2018
  • In this paper, we prove that if every bounded ${\mathcal{A}}$-harmonic function on a complete Riemannian manifold M is asymptotically constant at infinity of p-nonparabolic ends of M, then each bounded ${\mathcal{A}}$-harmonic function is uniquely determined by the values at infinity of p-nonparabolic ends of M, where ${\mathcal{A}}$ is a nonlinear elliptic operator of type p on M. Furthermore, in this case, every bounded ${\mathcal{A}}$-harmonic function on M has finite energy.

LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.137-146
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. The main object of this paper is to present explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function.

ASYMPTOTIC BEHAVIOR OF A-HARMONIC FUNCTIONS AND p-EXTREMAL LENGTH

  • Kim, Seok-Woo;Lee, Sang-Moon;Lee, Yong-Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.423-432
    • /
    • 2010
  • We describe the asymptotic behavior of functions of the Royden p-algebra in terms of p-extremal length. We also prove that each bounded $\cal{A}$-harmonic function with finite energy on a complete Riemannian manifold is uniquely determined by the behavior of the function along p-almost every curve.

L2 HARMONIC FORMS ON GRADIENT SHRINKING RICCI SOLITONS

  • Yun, Gabjin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1189-1208
    • /
    • 2017
  • In this paper, we study vanishing properties for $L^2$ harmonic 1-forms on a gradient shrinking Ricci soliton. We prove that if (M, g, f) is a complete oriented noncompact gradient shrinking Ricci soliton with potential function f, then there are no non-trivial $L^2$ harmonic 1-forms which are orthogonal to df. Second, we show that if the scalar curvature of the metric g is greater than or equal to (n - 2)/2, then there are no non-trivial $L^2$ harmonic 1-forms on (M, g). We also show that any multiplication of the total differential df by a function cannot be an $L^2$ harmonic 1-form unless it is trivial. Finally, we derive various integral properties involving the potential function f and $L^2$ harmonic 1-forms, and handle their applications.

UNIQUENESS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEM OF CERTAIN NONLINEAR ELLIPTIC OPERATORS VIA p-HARMONIC BOUNDARY

  • Lee, Yong Hah
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.1025-1031
    • /
    • 2017
  • We prove the uniqueness of solutions for the boundary value problem of certain nonlinear elliptic operators in the setting: Given any continuous function f on the p-harmonic boundary of a complete Riemannian manifold, there exists a unique solution of certain nonlinear elliptic operators, which is a limit of a sequence of solutions of the operators with finite energy in the sense of supremum norm, on the manifold taking the same boundary value at each p-harmonic boundary as that of f.

THE BERGMAN KERNEL FUNCTION AND THE SZEGO KERNEL FUNCTION

  • CHUNG YOUNG-BOK
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.199-213
    • /
    • 2006
  • We compute the holomorphic derivative of the harmonic measure associated to a $C^\infty$bounded domain in the plane and show that the exact Bergman kernel function associated to a $C^\infty$ bounded domain in the plane relates the derivatives of the Ahlfors map and the Szego kernel in an explicit way. We find several formulas for the exact Bergman kernel and the Szego kernel and the harmonic measure. Finally we survey some other properties of the holomorphic derivative of the harmonic measure.

ROUGH ISOMETRY, HARMONIC FUNCTIONS AND HARMONIC MAPS ON A COMPLETE RIEMANNIAN MANIFOLD

  • Kim, Seok-Woo;Lee, Yong-Han
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.73-95
    • /
    • 1999
  • We prove that if a given complete Riemannian manifold is roughly isometric to a complete Riemannian manifold satisfying the volume doubling condition, the Poincar inequality and the finite covering condition at infinity on each end, then every positive harmonic function on the manifold is asymptotically constant at infinity on each end. This result is a direct generalization of those of Yau and of Li and Tam.

  • PDF

A Fuzzy Based Solution for Allocation and Sizing of Multiple Active Power Filters

  • Moradifar, Amir;Soleymanpour, Hassan Rezai
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.830-841
    • /
    • 2012
  • Active power filters (APF) can be employed for harmonic compensation in power systems. In this paper, a fuzzy based method is proposed for identification of probable APF nodes of a radial distribution system. The modified adaptive particle swarm optimization (MAPSO) technique is used for final selection of the APFs size. A combination of Fuzzy-MAPSO method is implemented to determine the optimal allocation and size of APFs. New fuzzy membership functions are formulated where the harmonic current membership is an exponential function of the nodal injecting harmonic current. Harmonic voltage membership has been formulated as a function of the node harmonic voltage. The product operator shows better performance than the AND operator because all harmonics are considered in computing membership function. For evaluating the proposed method, it has been applied to the 5-bus and 18-bus test systems, respectively, which the results appear satisfactorily. The proposed membership functions are new at the APF placement problem so that weighting factors can be changed proportional to objective function.

Poisson integrals contained in harmonic bergman spaces on upper half-space

  • Yi, Heung-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 1997
  • On the setting of the upper half-space, H of the euclidean n-space, we consider the question of when the Poisson integral of a function on the boundary of H is a harmonic Bergman function and here we give a partial answer.

  • PDF