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LOG-SINE AND LOG-COSINE INTEGRALS

Junesang Choi

Abstract. Motivated essentially by their potential for applications
in a wide range of mathematical and physical problems, the log-
sine and log-cosine integrals have been evaluated, in the existing
literature on the subject, in many different ways. The main object
of this paper is to present explicit evaluations of some families of
log-sine and log-cosine integrals by making use of the familiar Beta
function.

1. Introduction and Preliminaries

Motivated essentially by their potential for applications in a wide
range of mathematical and physical problems, the log-sine and log-cosine
integrals have been evaluated, in the existing literature on the subject,
in many different ways (see, for example, [2, 3, 6, 8, 9, 13, 15, 17, 18, 19,
20, 21] and the references therein). By making use of the familiar Beta
function B(α, β) (see, for example, [18, p. 8, Eq. (43)])

(1.1) B(α, β) =



∫ 1

0
tα−1(1− t)β−1 dt (<(α) > 0; <(β) > 0)

Γ(α) Γ(β)

Γ(α+ β)
(<(α) < 0; <(β) < 0; α, β 6∈ Z−0 ),

where Z−0 := Z− ∪ {0}, Z− := {−1, −2, −3, . . .}, and Γ is the familiar
Gamma function, we aim at presenting evaluations of some families of
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log-sine and log-cosine integrals. Setting t = sin2 θ in (1.1), we have the
following equivalent form of the Beta function B(α, β):

(1.2) B(α, β) = 2

∫ π/2

0

(sin θ)2α−1 (cos θ)2β−1 dθ (<(α) > 0; <(β) > 0).

For our purpose, let us replace α and β by µ+ 1 and ν+ 1, respectively,
in (1.2) and we get:

(1.3)

∫ π/2

0
(sin θ)2µ+1 (cos θ)2ν+1 dθ =

Γ(µ+ 1) Γ(ν + 1)

2 Γ(µ+ ν + 2)

(<(µ) > −1; <(ν) > −1).

Differentiating each side of (1.3) p times with respect to the variable µ,
we obtain

(1.4)

∫ π/2

0
(log sin θ)p (sin θ)2µ+1 (cos θ)2ν+1 dθ

=
1

2p+1

∂p

∂µp

[
Γ(µ+ 1) Γ(ν + 1)

Γ(µ+ ν + 2)

]
(<(µ) > −1; <(ν) > −1; p ∈ N0 := N ∪ {0}) ,

where N is the set of positive integers. Differentiating each side of (1.4)
q times with respect to the variable ν, we get

(1.5)

∫ π/2

0
(log sin θ)p (log cos θ)q (sin θ)2µ+1 (cos θ)2ν+1 dθ

=
1

2p+q+1

∂q

∂νq
∂p

∂µp

[
Γ(µ+ 1) Γ(ν + 1)

Γ(µ+ ν + 2)

]
(<(µ) > −1; <(ν) > −1; p, q ∈ N0 := N ∪ {0}) .

We also need the following notations and functions. The generalized

harmonic numbers H
(s)
n of order s are defined by (cf. [1]; see also [10],

[12], [17, p. 156] and [18, Section 3.5])

(1.6) H(s)
n :=

n∑
j=1

1

js
(n ∈ N; s ∈ C)

and

(1.7) Hn := H(1)
n =

n∑
j=1

1

j
(n ∈ N)
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are the harmonic numbers. Here C denotes the set of complex numbers,
and we assume that

H0 := 0, H
(s)
0 := 0 (s ∈ C \ {0}) and H

(0)
0 := 1.

The generalized harmonic functions H
(s)
n (z) are defined by (see [4, 10];

see also [14, 16])

(1.8) H(s)
n (z) :=

n∑
j=1

1

(j + z)s
(n ∈ N; z ∈ C \ Z−; s ∈ C),

so that, obviously,

H(s)
n (0) = H(s)

n .

The generalized odd harmonic numbers O
(s)
n of order s are defined by

(1.9) O(s)
n :=

n∑
j=1

1

(2j − 1)s
(n ∈ N; s ∈ C)

and

(1.10) On := O(1)
n =

n∑
j=1

1

2j − 1
(n ∈ N)

are the odd harmonic numbers.
The Riemann Zeta function ζ(s) is defined by (see, for example, [18,

Section 2.3])

(1.11) ζ(s) :=



∞∑
n=1

1

ns
=

1

1− 2−s

∞∑
n=1

1

(2n− 1)s
(<(s) > 1)

1

1− 21−s

∞∑
n=1

(−1)n−1

ns
(<(s) > 0; s 6= 1),

which is an obvious special case of the Hurwitz (or generalized) Zeta
function ζ(s, a) defined by

(1.12) ζ(s, a) :=
∞∑
k=0

(k + a)−s
(
<(s) > 1; a ∈ C \ Z−0

)
.

Equation (1.6) can be written in the following form:

(1.13) H(s)
n = ζ(s)− ζ(s, n+ 1) (<(s) > 1; n ∈ N)
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by recalling the well-known (easily-derivable) relationship between the
Riemann Zeta function ζ(s) and the Hurwitz (or generalized) Zeta func-
tion ζ(s, a) (see [17, Eq. 2.3(9)]):

(1.14) ζ(s) = ζ(s, n+ 1) +

n∑
k=1

k−s (n ∈ N0) .

The Polygamma functions ψ(n)(s) (n ∈ N) are defined by

(1.15) ψ(n)(s) :=
dn+1

dzn+1
log Γ(s) =

dn

dsn
ψ(s)

(
n ∈ N0; s ∈ C \ Z−0

)
,

where ψ(s) denotes the Psi (or Digamma) function defined by

(1.16) ψ(s) :=
d

ds
log Γ(s) and ψ(0)(s) = ψ(s)

(
s ∈ C \ Z−0

)
.

A well-known (and potentially useful) relationship between the Poly-

gamma functions ψ(n)(s) and the generalized Zeta function ζ(s, a) is
given by

(1.17)
ψ(n)(s) = (−1)n+1 n!

∞∑
k=0

1

(k + s)n+1
= (−1)n+1 n! ζ(n+ 1, s)(

n ∈ N; s ∈ C \ Z−0
)
.

It is also easy to have the following expression (cf. [17, Eq. 1.2(54)]):

(1.18) ψ(m)(s+n)−ψ(m)(s) = (−1)mm!H(m+1)
n (s− 1) (m, n ∈ N0),

which immediately gives H
(s)
n the following another expression (cf. [11,

Eq. (20)]):

(1.19)
H(m)
n =

(−1)m−1

(m− 1)!

[
ψ(m−1)(n+ 1)− ψ(m−1)(1)

]
(m ∈ N; n ∈ N0) .

2. Some Properties and Special Values of the Psi and Gamma
Functions

In this section, for easy reference in the next section, we recall some
properties and special values of the Psi and Gamma functions. The fun-
damental functional relation for the Gamma function is given as follows:

(2.1) Γ(z + 1) = z Γ(z),
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so that, obviously,

(2.2) Γ(z) =
Γ(z + n)

z(z + 1) · · · (z + n− 1)
(n ∈ N0) .

(2.3) ψ(z + n) = ψ(z) +Hn(z − 1) (n ∈ N0) ,

which is an obvious special case (m = 0) of (1.18).

(2.4) Γ(n+ 1) = n! and Γ

(
n+

1

2

)
=

(2n)!
√
π

22n n!
(n ∈ N0) .

(2.5) ψ(n) = −γ +Hn−1 (n ∈ N) ,

where H0 := 0 and γ denotes the Euler-Mascheroni constant defined by

(2.6) γ := lim
n→∞

(
n∑
k=1

1

k
− log n

)
∼= 0.57721 56649 01532 86060 6512 · · · .

(2.7) ψ

(
n+

1

2

)
= −γ − 2 log 2 + 2On (n ∈ N0) .

(2.8) ψ

(
1

2

)
= −γ − 2 log 2.

(2.9) ψ

(
1

3

)
= −γ − 1

6
π
√

3− 3

2
log 3.

(2.10) ψ

(
2

3

)
= −γ +

1

6
π
√

3− 3

2
log 3.

(2.11) ψ

(
1

4

)
= −γ − 1

2
π − 3 log 2.

(2.12) ψ

(
3

4

)
= −γ +

1

2
π − 3 log 2.
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3. Log-Sine and its related integrals

In this section, as an illustration, we consider only the case (p = 1)
of (1.4). To do this, let

f(µ) :=
Γ(µ+ 1) Γ(ν + 1)

Γ(µ+ ν + 2)
.

Taking the logarithmic derivative of f(µ), we get

(3.1) f ′(µ) = f(µ) [ψ(µ+ 1)− ψ(µ+ ν + 2)] .

Then, applying Leibniz’s rule for differentiation to Equation (3.1), we
obtain

(3.2)
f (k+1)(µ) =

k∑
j=0

(
k

j

)
f (j)(µ) [ψ(µ+ 1)− ψ(µ+ ν + 2)](k−j)

(k ∈ N0) .

Now, from Equations (1.4) and (3.1), we find the following formula:

(3.3)

∫ π/2

0
(log sin θ) (sin θ)2µ+1 (cos θ)2ν+1 dθ

=
1

4

Γ(µ+ 1) Γ(ν + 1)

Γ(µ+ ν + 2)
[ψ(µ+ 1)− ψ(µ+ ν + 2)]

(<(µ) > −1; <(ν) > −1) .

Here, we present some interesting special cases of (3.3) without their
proofs. It is noted that each of the formulas presented here can be
easily derived by using suitably chosen identities and, if necessary, their
easily-derivable variants, given in Sections 1 and 2.

(1) (µ, ν) = (0, ν).

(3.4)

∫ π/2

0
(log sin θ) (sin θ) (cos θ)2ν+1 dθ

= − 1

4 (ν + 1)
[γ + ψ(ν + 2)] (<(ν) > −1) .

(2) (µ, ν) = (0, 0).

(3.5)

∫ π/2

0
(log sin θ) (sin θ) (cos θ) dθ = −1

4
.
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(3) (µ, ν) = (0, 1/2).

(3.6)

∫ π/2

0
(log sin θ) (sin θ) (cos θ)2 dθ = −4

9
+

1

3
log 2.

(4) (µ, ν) = (0, n).

(3.7)

∫ π/2

0
(log sin θ) (sin θ) (cos θ)2n+1 dθ = − Hn+1

4(n+ 1)
(n ∈ N0) .

(5) (µ, ν) = (0, n+ 1/2).

(3.8)

∫ π/2

0
(log sin θ) (sin θ) (cos θ)2n+2 dθ =

1

2n+ 3
(log 2−On+2)

(n ∈ N0) .

(6) (µ, ν) = (0, 1/3).

(3.9)

∫ π/2

0
(log sin θ) (sin θ) (cos θ)

5
3 dθ = −45

64
+

π

32

√
3 +

9

32
log 3.

(7) (µ, ν) = (1/2, ν).

(3.10)

∫ π/2

0
(log sin θ) (sin θ)2 (cos θ)2ν+1 dθ

=

√
π

8

Γ(ν + 1)

Γ(ν + 5/2)

[
2− γ − 2 log 2− ψ

(
ν +

5

2

)]
(<(ν) > −1) .

(8) (µ, ν) = (1/2, 0).

(3.11)

∫ π/2

0
(log sin θ) (sin θ)2 (cos θ) dθ = −1

9
.

(9) (µ, ν) = (1/2, n).

(3.12)

∫ π/2

0
(log sin θ) (sin θ)2 (cos θ)2n+1 dθ

=
22n+2 n! (n+ 2)!

(2n+ 4)!
(1−On+2) (n ∈ N0) .

(10) (µ, ν) = (n, m).

(3.13)

∫ π/2

0
(log sin θ) (sin θ)2n+1 (cos θ)2m+1 dθ

=
n!m!

4 (n+m+ 1)!
(Hn −Hn+m+1) (m, n ∈ N0) .
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(11) (µ, ν) = (n, m+ 1/2).

(3.14)

∫ π/2

0
(log sin θ) (sin θ)2n+1 (cos θ)2(m+1) dθ

=
22n n! (2m+ 2)! (n+m+ 2)!

(m+ 1)! (2n+ 2m+ 4)!
(2 log 2 +Hn − 2On+m+2)

(m, n ∈ N0) .

(12) (µ, ν) = (n+ 1/2, m).

(3.15)

∫ π/2

0
(log sin θ) (sin θ)2(n+1) (cos θ)2m+1 dθ

=
22m+1m! (2n+ 2)! (m+ n+ 2)!

(n+ 1)! (2m+ 2n+ 4)!
(On+1 −On+m+2)

(m, n ∈ N0) .

(13) (µ, ν) = (n+ 1/2, m+ 1/2).

(3.16)

∫ π/2

0
(log sin θ) (sin θ)2(n+1) (cos θ)2(m+1) dθ

=
π (2n+ 2)! (2m+ 2)!

22m+2n+6 (n+ 1)! (m+ 1)! (n+m+ 2)!
(−2 log 2 + 2On+1 −Hn+m+2)

(m, n ∈ N0) .

4. Concluding Remarks

Similarly as in getting (3.3), we obtain

(4.1)

∫ π/2

0
(log cos θ) (sin θ)2µ+1 (cos θ)2ν+1 dθ

=
1

4

Γ(µ+ 1) Γ(ν + 1)

Γ(µ+ ν + 2)
[ψ(ν + 1)− ψ(µ+ ν + 2)]

(<(µ) > −1; <(ν) > −1) .

In view of Equation (1.1), it is easy to see the following symmetric
relation with respect to the variables α and β:

(4.2) B(α, β) = B(β, α).

Since we begin by giving a partial differentiation to the Equation (1.3),
which preserves the symmetry with respect to the variables µ and ν, if
we interchange sin θ ↔ cos θ and µ↔ ν in each of those integrals given
in Section 3, we can obtain formulas each of whose evaluations is the
same as in the corresponding results in Section 3. In fact, by using (4.1),
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we verify this fact directly. For example, we present only the following
four formulas:

(1) (µ, ν) = (µ, 0).

(4.3)

∫ π/2

0
(log cos θ) (sin θ)2µ+1 (cos θ) dθ

= − 1

4 (µ+ 1)
[γ + ψ(µ+ 2)] (<(µ) > −1) .

(2) (µ, ν) = (0, 0).

(4.4)

∫ π/2

0
(log cos θ) (sin θ) (cos θ) dθ = −1

4
.

(3) (µ, ν) = (1/2, 0).

(4.5)

∫ π/2

0
(log cos θ) (sin θ)2 (cos θ) dθ = −4

9
+

1

3
log 2.

(4) (µ, ν) = (n, 0).

(4.6)

∫ π/2

0
(log cos θ) (sin θ)2n+1 (cos θ) dθ = − Hn+1

4(n+ 1)
(n ∈ N0) .

Here we showed how we can obtain some interesting and (potentially)
useful integrals by using a well known function. We leave the integrals
involved in more complicated integrands for the future study.
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