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ROUGH ISOMETRY, HARMONIC
FUNCTIONS AND HARMONIC MAPS ON
A COMPLETE RIEMANNIAN MANIFOLD

SEOK Woo KiM AND YoNG HAH LEE

ABSTRACT. We prove that if a given complete Riemannian mani-
fold is roughly isometric to a complete Riemannian manifold sat-
isfying the volume doubling condition, the Poincaré inequality and
the finite covering condition at infinity on each end, then every pos-
itive harmonic function on the manifold is asymptotically constant
at infinity on each end. This result is a direct generalization of those
of Yau and of Li and Tam.

1. Introduction

The Liouville theorem has long been an interesting topic of study
to analysts and geometers. The classical Liouville theorem states that
every bounded entire function on R? must be constant. In 1975, Yau
[19] proved a remarkable result that every positive harmonic function
on a complete Riemannian manifold with nonnegative Ricci curvature
must be also constant. Later, Li and Tam [12] pointed out that every
positive harmonic function on a complete Riemannian manifcld with
nonnegative sectional curvature outside a compact subset is asymptot-
ically constant at infinity on each end.

In the above works, the curvature plays a crucial role in solving the
each problem. A typical method to generalize these results is to relax
the curvature assumption. We know that if a complete Riemannian
manifold satisfies the volume doubling condition, the Sobolev inequal-
ity and the Poincaré inequality, then the Harnack inequality for the
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positive harmonic function holds on the manifold. This implies that
every positive harmonic function on the manifold must be constant.
Thus the solvability of the problem depends on much cruder quantities
rather than the local concepts like the curvature.

On the other hand, Kanai [8], [9] and [10] introduced the rough
isometry, which is a map preserving some analytic quantities like the
volume doubling condition and the Sobolev constant and so on. In
the viewpoint of the rough isometry, Choi and the second author [5]
proved that if a complete Riemannian manifold is roughly isometric
to a manifold satisfying the volume doubling condition, the Sobolev
inequality and the Poincaré inequality, then the Harnack inequality
for the positive harmonic function holds on the manifold. (Also see
[6].) It is well known that any complete Riemannian manifolds with
nonnegative Ricci curvature satisfy these conditions. Therefore, this
result is a generalization of Yau’s result.

Now we consider the result of Li and Tam [15]. First, they classify
the ends of a complete Riemannian manifold, which are defined in
§2, by the volume growth rate as follows: An end D of a complete
Riemannian manifold is called a large end, if

e t
/ro vol(Bt(o) N D) dt < oo,

for some 79 > 0. Otherwise, D is called a small end. With this classi-
fication, they proved the following theorem:

THEOREM (L1 AND TAM). Let M be a complete Riemannian man-
ifold with nonnegative Ricci curvature outside a compact set and the
finite first Betti number. Suppose that M has l-large ends and s-small
ends, respectively. Then the dimension of the space spanned by har-
monic functions which are bounded on one side at each end of M equals
I+ s. And the dimension of the space of bounded harmonic functions
M equals l. Furthermore, every bounded harmonic function on M has
the finite Dirichlet integral. If M has at least one large end, then the
dimension of the space spanned by positive harmonic functions on M
equals l+s. In particular, if M has only small ends, then every positive
harmonic function on M is constant.

In this paper, we have generalized the result of Li and Tam in the
viewpoint of the rough isometry. Our first question is whether the
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Harnack inequality of the sphere version at infinity holds on each end
being roughly isometric to an end satisfying it. We have pointed out
that the volume doubling condition (V D), the Poincaré inequality (P)
and the finite covering condition (F'C) at infinity of each end, which
are defined in §3, enable the Harnack inequality of the sphere version
at infinity to hold on each end.

On the other hand, Liu [16] proved that if a complete Riemannian
manifold has the nonnegative Ricci curvature outside a compact set,
then each sphere centered at origin is covered by finitely many balls.
Thus it follows that if the Ricci curvature of a complete Riemannian
manifold is nonnegative outside a compact set and the manifold has
the finite first Betti number, then each end of the manifold satisfies
the finite covering condition (See [15]), hence these three conditions.
Now our concerning is whether each of these conditions is preserved
through a rough isometry. In §3, the Harnack inequality of the sphere
version at infinity holds on the end being roughly isometric to an end
satisfying the volume doubling condition, the Poincaré inequality and
the finite covering condition at infinity. On the other hand, we can
also prove that the parabolicity of each end, which is defined in §2, is
invariant under a rough isometry. (See §2.) As a consequence of these
results, we have the following main theorem in §3:

MAIN THEOREM. Let N be a complete Riemannian manifold rough-
ly isometric to a complete Riemannian manifold M which satisfies the
volume doubling condition (V D), the Poincaré inequality (P) and the
finite covering condition (F'C) at infinity of each end. Suppose that
M has l-nonparabolic ends and s-parabolic ends, respectively. Then
the dimension of the space spanned by harmonic functions which are
bounded on one side at infinity of each end of N equals | + s. And
the dimension of the space of bounded harmonic functions on N equals
l. Furthermore, every bounded harmonic function on M has the finite
Dirichlet integral. If M has at least one nonparabolic end, then the
dimension of the space spanned by positive harmonic functions on N
equals l + s. In particular, if M has only parabolic ends, then every
positive harmonic function on N is constant.

Note that there are no curvature assumptions imposed on our main
theorem.
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In [18], Varopoulos proved that each small end is parabolic. And Li
and Tam [15] proved that each large end of M is nonparabolic if M
is a complete Riemannian manifold with nonnegative Ricci curvature
outside a compact set and the finite first Betti number. Since we know
that the volume growth rate is invariant under rough isometries, our

'main result can be rephrased in the viewpoint of large ends and small
ends as follows: ‘

COROLLARY. Let M be a complete Riemannian manifold with non-
negative Ricci curvature outside a compact set and the finite first Betti
number. Suppose that M has l-large ends and s-small ends, respec-
tively. Let N be a complete Riemannian manifold being roughly iso-
metric to M. Then the dimension of the space spanned by harmonic
functions which are bounded on one side at infinity of each end of N
equals [ + s. And the dimension of the space of bounded harmonic
functions on N equals | . Furthermore, every bounded harmonic func-
tion on N has the finite Dirichlet integral. If M has at least one
nonparabolic end, then the dimension of the space spanned by positive
harmonic functions on N equals | + s. In particular, if M has only
small ends, then every positive harmonic function on N is constant.

This corollary is a generalization of the result of Li and Tam [15].

Let us turn our concern to harmonic maps. Cheng [3] proved the Li-
ouville type theorem for harmonic maps as in [19]. Cheng proved that
every harmonic map with bounded image from a complete Riemannian
manifold with nonnegative Ricci curvature into a Cartan-Hadamard
manifold is constant. In [4], Choi generalized Cheng’s result. To be
precise, Choi proved that every harmonic map from a complete Rie-
mannian manifold with nonnegative Ricci curvature into a complete
Riemannian manifold with sectional curvature bounded above by a
constant is constant if the image is contained in a geodesic ball which
lies inside the cut locus of the center of the ball. Later, Kendall [11] ob-
tained the same result in the case when the domain manifold supports
no nonconstant bounded harmonic functions.

On the other hand, Avilés, Choi and Micallef [1] estimated the differ-
ence between a harmonic map and the harmonic extension of its bound-
ary data. Recently, using the estimate in [1], Sung, Tam and Wang
[17] proved that if every bounded harmonic function is asymptotically
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constant at infinity on each nonparabolic end, then every harmonic
map with bounded image is also asymptotically constant at infinity
on each nonparabolic end, in the case when the image is contained
in a geodesic ball, which lies inside the cut locus of the center of the
ball. From this result, in §4, we have immediately that every harmonic
map with bounded image is asymptotically constant at infinity on each
nonparabolic end, whenever each nonparabolic end is roughly isomet-
ric to an end satisfying the volume doubling condition, the Poincaré
inequality and the finite covering condition at infinity, and the image is
contained in a geodesic ball which lies inside the cut locus of the center
of the ball. In §4, we also remark the existence and the uniqueness
theorem about the bounded harmonic map.

ACKNOWLEDGEMENT. The authors would like to thank Professor
Hyeong In Choi for useful discussions and for his constant interest in
our work.

2. Rough isometry and ends

In this section, we collect some definitions and results on rough
isometries and ends. The notion of the rough isometry is introduced
by Kanai in (8], [9] and [10].

A rough isometry ¢ : X — Y between two metric spaces X and Y is
a (not necessarily continuous) map satisfying the following conditions:

(R1) there exists a constant 7 > 0 such that

Y = | Br(p(a)),

z€X

where B (¢(z)) means the T-neighborhood of ¢(z);
(R2) there exist constants @ > 1 and b > 0 such that

L dlar, m2) ~ b < dlplen), (22)) < ad(z1,22) +b

for all 1:1,.’172’6 X, where d denotes the distances of X and Y
induced from their metrics, respectively.
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It is easy to prove that being roughly isometric is an equivalence rela-
tion. (See [9].) In [8], [9] and [10], Kanai assumed that any complete
Riemannian manifold M satisfies the following conditions:

(K1)  the Ricci curvature of the manifold M is bounded below by a
constant;
(K2) the injectivity radius is positive, i.e., inj(M) > 0.

Recently, these conditions were replaced by Coulhon and Saloff-
Coste [6] with the local volume comparison condition and the local
volume doubling condition as follows: For a given rough isometry
¢ : M — N satisfying the conditions (R1) and (R2),

(VC)ioc there exists a constant C' > 0 such that

1

ol vol By (z) < vol By(p(z)) < C vol By (z)
for all z in M,

(VD)ioc there exists a constant C, < oo depending only on r such that

vol By, (z) < C, vol B,.(x)
for all z in M (in N, respectively).

These conditions are the technical improvements of the conditions (K1)
and (K2).

Because rough isometries do not preserve the local properties of
manifolds, it is needed to add some local conditions on the Riemannian
manifolds M and N, respectively. We assume, with the condition
(VD)ioc, the local Poincaré inequality on both M and N as follows:

(P)ioc there exists a constant C, < oo depending only on r > 0 such

that
/ IVfIZCr/ F =7l
B.(z) B, (x)

for each z in M (in N, respectively) and for all f € C®(B,(z)),
where

F=(volBr(2))™" [g (s /-
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To add this assumption is reasonable, because the condition (P)ioc
holds on a complete Riemannian manifold if its Ricci curvature is
bounded below. (See {2].)

From now on, when we say that a map ¢ : M — N is a rough
isometry between complete Riemannian manifolds M and N, it means
that the map ¢ satisfies the conditions (R1), (R2) and (VC)ioc, and
the complete Riemannian manifolds M and N satisfy the conditions
(VD)ioc and (P)ioc, unless otherwise specified.

Now we define ends of a complete Riemannian manifold, which en-
able us to forecast infinite behaviors of harmonic functions. Let o be
a fixed point of M and §(r) denote the number of unbounded compo-
nents of M \ B.(0). It is easy to prove that f(r) is nondecreasing in
r > 0. Let 7‘1_1_)11010 #(r) = k, where k may be infinity, then we say that the

number of ends of M is k. If k is finite, then we can choose rg > 0 such
that §(r) = k for all 7 > rp. In this case, there exist mutually disjoint
unbounded components Dy, Da;--- , Dy of M\ B,,(0) and we call each
D; an end of the complete Riemannian manifold M for ¢ =1,2,--- , k.

Let ¢ : M — N be a rough isometry between complete Riemannian
manifolds M and N, and let o and o’ be fixed points in M and N,
respectively, such that o’ = ¢(0). Then we can prove that the number
of ends of N is equal to that of M as follows:

LEMMA 2.1. Let M and N be the complete Riemannian manifolds
(not necessarily satisfying the conditions (VD)o and (P)ioc) and ¢ :
M — N be a rough isometry (not necessarily satisfying the condition
(VC)ioc). Suppose that the number of ends of M is finite. Then the
number of ends of N is equal to that of M.

Proof. Let k be the number of ends of M. Then there exist mutually
disjoint unbounded components Dy, Dy - -+ , Dy, of M \ B,(0) for some
ro > 0 such that

D1UDyU---UDy C M\ By,(0).

And we can choose a constant ¢ > 0 such that all bounded components
of M\ B, (o) are contained in By 1.(0).

First, we will show that the number of ends of N is less than or
equal to k. Otherwise, we can choose a constant to > a(ro +¢) + b
such that the number of unbounded components of N \ B, (o) is
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greater than k. And there exist mutually disjoint unbounded com-
ponents E1, By, -+ Exy1 in N\ By (0') for some j =1,2,--- ,k+1.
Note that B;(p(D1UDyU---UDg)) D EyUEyU---UEg;;. Then
for some i =1,2,--- , k, we can choose a sequence {z,} C D; and some
J=1,2,--- ,k+1 satisfying the followings:
(i)
d(xn,$n+1) =1

for each n € N;
(ii)
nll}n;‘o d((p(yn), Bto (O,)) = o0,

where {y.} is a subsequence of {z,} and ¢(y,) € E; for all
n €N;
(iii)
nll{lgo d(‘P(Zn), Bto (0,)) = 0,

where {z,} is the complement of {y,} in {z,} and ¢(z,) €
(N\ By, (0'))\ Ej for all n € N.

Choose a sufficiently large ng € N such that
@(Tny) € By and p(@ngs1) € (N \ Bio(0) \ By,
where Tp, € {yn} and zp,+1 € {2,}. For such an ng € N, we have
d(o(zn,), Bto(o'))‘> a+b and d(p(Tny+1), Bty (0))) > a+b.

Since d(¢(Tn,), P(Tne+1)) < a + b, this is a contradiction. Therefore,
the number of ends of N is less than or equal to k. And since there
exists a rough isometry ¢ : N — M, the number of ends of N must be
k. (]

REMARK. In Lemma 2.1, we have proved that the number of ends of
a manifold is preserved under a rough isometry. We now show that each
end of M corresponds to each end of N through the rough isometry
¢:M— N.

Let the number of ends of M be k € Nand let F1, E; - - - , E), be ends
of N. Then E1, E3, - - , E} are mutually disjoint in N'\ By, (0’) for some
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to > 0. Foreachi=1,2,.-- ,k, there exist some ; =1,2,--- ,k and a
constant r; > 0 satisfying ¢(D; \ Br,(0)) C Ej;,. Hence we can choose
a constant 7 > 0 such that ¢(D; \ Bi(0)) C Ej, forall ¢ =1,2,--- k.
We will show that if p(D;, \ Bi(0)) C Ej, and ¢(D;, \ Bz(0)) C Ej,_
for 4y # 12, then ji, # j;,. Otherwise, o((D;, U D;,) \ B#(0)) C Ej; .
Then there exists a sequence {z,} C Ej, satisfying the followings:
(i)
d(zn,Tpy1) =1

foralln e N;
(ii)

lim d(yn, Bi,(0')) = oo,
n—o0

where {y,} is a subsequence of {z,} and y, € B,(p(D;, \
B;:(0))) for all n € N;
(iii)

nl—l—{%o d(z"’ Bto(ol)) = 00,

where {z,} is the complement of {y,} in {z,} and 2, € B-(¢
((M\ Bi(0))\ D;,)) for all n € N.

We can choose a sufficiently large ng € N such that z,, € {y,} and
Zro+1 € {Znt+1}. This is a contradiction to d(zn,, Zny+1) = 1. Let us
rearrange j; such that j; = ¢. Then the restriction map ¢ on each end
D; becomes a rough isometry ¢|p, : D; — E;.

From this result, we have the following lemma:

LEMMA 2.2. Let M and N be the complete Riemannian mani-
folds (not necessarily satisfying the conditions (VD)o and (P)ioc)
and ¢ : M — N be a rough isometry (not necessarily satisfying the
condition (VC)ioc). Let D; and E; be ends of M and N, respectively,
fori=1,2,--- ,k. Then the rough isometry ¢ induces a rough isome-
try ¢|p, : D; — E; for each t = 1,2,--- |k satisfying ¢(D;) C E; and
B (p(D;)) D E; \ By, (0') for some t; > ty.

We now discuss the parabolicity of ends of a complete Riemannian
manifold. The parabolicity of an end, together with the Harnack in-
equality of the sphere version at infinity on the end, determines whether
each positive harmonic function converges uniformly at infinity on the
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end or not. All ends are divided into two classes by the parabolicity.
We say that an end D of a complete Riemannian manifold M is a non-
parabolic end, if for some r; > 0, there exist a continuous function
defined on D \ B, (0) and a sequence {z,} on D \ B, (0) such that

Au=0 on D\ B, /(o)
u=1 ondB,(o)ND
u(zp) — 0 as z, — oo,

where A is the Laplacian on the manifold M. Otherwise, the end D
is called a parabolic end. Now define the capacity of each end D of a
complete Riemannian manifold M by

Cap(D \ Br,(0))

= inf{/ |Vu{2 ru € Cg°(D\ By, (0)) and U|BBT, (o)nD = 1},
D\ By, (o)

where C§°(D \ By, (0)) means the set of all smooth functions vanishing
at infinity and continuous up to the interior boundary dB,,(o)ND. It
is easy to prove that the positivity of Cap(D \ By, (0)) is equivalent to
the nonparabolicity of the end D.

In [10], Kanai proved that the positivity of the capacity of the whole
manifold is invariant under rough isometries. Using Kanai’s program,
it is easy to prove that the positivity of the capacity of each end is
invariant under rough isometries as follows:

LEMMA 2.3. Let D and E be ends of complete Riemannian man-
ifolds M and N, respectively, satisfying the conditions (V D), and
(P)ioc- Let ¢ : D — E be a rough isometry satisfying the condition
(VC)ioc- Suppose that Cap(D\ B,,(0)) > 0 for some r; > 0. Then we
have Cap(FE \ Bg,(0')) > 0, where Ry > 2(ary + b).

From Lemma 2.1, Lemma 2.2 and Lemma 2.3, we have the conse-
quence that the rough isometry ¢ : M — N induces a rough isometry
¢|p : D — E preserving the parabolicity.

3. Proof of the main theorem

First, we study the Harnack inequality of the sphere version at in-
finity on each end of a complete Riemannian manifold, which plays a
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crucial role in proving that every positive harmonic function converges
uniformly at infinity on each end. To prove the Harnack inequality of
the sphere version at infinity on each end, we need to add some ana-
lytic conditions on each end of the manifold as follows: In (VD) and
(FC) below, D is an end of a complete Riemannian manifold M and
each ball B,(z) denotes the intersection B,(z) N D with the end D.

(VD) for given 0 < a < 1/2, there is a constant C < oo depending
only on « such that for any point ¢ € 8Bgr(0) N D and any
0<r<R/2,

vol B,(z) < Cvol Byr(z),

where R is sufficiently large;

(P) there exist a constant C < oo and an integer n € N such that
for any point z € OBgr(o) N D, any 0 < 7 < R/2 and all
f € C=(B,(x),

/ f-TFP<or / ViR,
Br/n(z) Br(z)

where R is sufficiently large and f = (vol B,/n(z)) ! [ By n(z) f;

(FC) for given 0 < a < 1/4, there exist an integer m = m(a) and
points &y,Z2, -+ ,Zm € OCg(0) N D such that for sufficiently
large R > 0

dCr(0)ND C 0 Bor(i)

=1

and |JI~, Bar(z;) is connected, where Cgr(0) denotes the un-
bounded component of D\ Bg(o).

By the results in [16] and [15], the condition (F'C) holds on a com-
plete Riemannian manifold with nonnegative Ricci curvature outside a
compact set and the finite first Betti number.

By using (V D), (P) and the result in [7], we have the Harnack in-
equality on each ball Byg(z;) in (FC). Hence, the sphere dCgr(0) N D
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is covered by m-balls on which the Harnack inequality holds. Conse-
quently, we can achieve the Harnack inequality of the sphere version at
infinity on the end D satisfying the conditions (V D), (P) and (FC).
Now we will prove that the Harnack inequality of the sphere version at
infinity holds also on the end being roughly isometric to the end D.

THEOREM 3.1 (THE HARNACK INEQUALITY). Let D and E be
ends of complete Riemannian manifolds M and N, respectively, and
D satisfy the conditions (VD), (P) and (FC). Let ¢ : D — FE be a
rough isometry. Then there exist a constant C < oo and a sequence
of hypersurfaces {Hg} in E such that for any nonnegative harmonic
function f defined on the end F,

e, <C ik
In particular, d(o', Hg) — 00 as R — oo and Hp divides E into two
parts Ar and Uy, where AR is a bounded subset of E and Ug is the
unbounded component of E.

First, we prove that the end E satisfies the conditions (VD) and
(P).

LEMMA 3.2. Let D and E be ends of complete Riemannian mani-
folds M and N, respectively, and D satisfy the condition (VD). Let
¢ : D — E be a rough isometry. Then for each 0 < a < 1/2, there
exists a constant C' < oo depending only on « such that for any point
y € 0Br(0')NE and any 0 < r < R/8a?,

vol Br(y) < Cvol B2a2ar(y) .

Proof. Since we assume the condition (V D)o, we have only to
prove the statement for sufficiently large r > 0. For each y € dBg(0’')N
E, there exists a point z € D such that d(y,¢(z)) < 7. From the
conditions (VD)ioe, (VC)ioe and the definition of the rough isometry,
we have

vol B.(y) < Cvol B,(¢(z)) < C vol Bagr(x).

From the assumption 7 < R/8a?, we have that 4ar < d(o,z). Thus
the condition (V D) has been applicable to the ball By, (z) and hence

vol B.(y) < C vol Bagar(z).
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Using the conditions (V D)joe, (VC)ioc and the definition of the rough
isometry again, we have

vol By.(y) < Cvol Byg2a,(¢(x)) < Cvol Bygzar(y)- O

Now we prove that the Poincaré inequality (P) holds on the end E.
By using the program of Coulhon and Saloff-Coste [6], we can prove the
following lemma. But in (P), each ball must be contained in the end
D. Thus the result of Coulhon and Saloff-Coste is not fully available in
our setting. So we need some modifications for the program of Coulhon
and Saloff-Coste [6].

LEMMA 3.3. Let D and E be ends of complete Riemannian man-
ifolds M and N, respectively, and D satisfy the condition (P). Let
¢ : D — E be a rough isometry. Then there exists constant C < oo
such that for any point y € 0Br(0d')NE, any 0 < r < R/2 and all
f € C=(B-(y)),

/ f -T2 <o / V12,
B,_/moﬂlo(y) ) Br(y)

where f = (vol B;/100n10(y)) ™t fBr/IOOnlo(y) f.

From Lemma 3.2 and Lemma 3.3, we have immediately the Harnack
inequality on every ball B,.(y) in E. We have only to prove that there

exists a sequence of hypersurfaces {Hg} in F such that Hg N E is
covered by finitely many balls, whose union is connected.

REMARK. In the condition (F'C), since | Ji~; Bar(0) is connected,
we may assume that for each i = 2,3,--- ,m,

Bor(x:) N Bar(zi-1) # 0.

Therefore, by adding some balls centered on Cg(0), we can rephrased
the condition (FC) as follows: For given 0 < o < 1/4 and for suffi-
ciently large R > 0, there is an integer m’ = m/(a) and z1, 22, -+ , Ty
€ 0Cgr(0) N D such that

(3.1) Bary2(8Cr(0) N D) C | JBar(:)
i=1
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and U:’;ll Byr(z;) is connected. In particular, d(z;,z;—1) < aR for
eachi=2,3,.--- ,m’

Choose a smallest integer n € N such that n > 8a%/a, and a finite
sequence {R; |j =0,1,2,--- ,n} such that

Ry =R/2a, Rj = R;j_1+aR/4a, for j=1,2,---,n

By the condition (3.1), there exist points 'a:{',x%, - ,xzn, € OCRg;(0)
for each 7 =0,1,2,--- ,n such that

Bar; /2 BCR U BaR

and U:r;ll Bag,(z!) is connected. Therefore, we obtain

(3'2) (Ba(R+7'+b)(o)\E(R—-r—b)/a(o))mE - U U BaaR(x{)U U Aj’
Jj=01i=1 3=0

where A; is the union of bounded components of £\ Cg,(0). Obviously,
U’ i=0 Uz_ Baor(z]) is also connected.

LEMMA 3.4. Let D and E be ends of complete Riemannian man-
ifolds M and N, respectively, and D satisfy the condition (FC). Let
¢ : D — E be a rough isometry. Then there exists a sequence of hy-
persurfaces {Hg} in E such that d(o’,Hg) — o0 as R — oo and Hp
divides E into two parts Ar and Ug, where A is a bounded subset of
E and Ug is the unbounded component of E. In particular,

Hrn E ¢ |J | Boarar(e(a))

j=0i=1

and Jj_o UZ1 Bsazor((a?)) is connected, where the points {z? |i =
1,2,---,m',j=0,1,2,--- ,n} are given in (3.2).
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Proof. Since d(xj.' z ) < aR for each i = 2,3,---,m' and j =

1 %i—1
0,1,2,--- ,n, we have

d(o(z?), o(z]_)) < 2aaR + b < 3aaR.

Thus U:’;l Biga R(cp(:cg )) is connected. On the other hand, since
d(0Cr,(0),0CR;_,(0)) < aR/2a

for each j = 1,2,--- ,m/, there exist points w; € 0Cr,(0) such that
d(w;,w;—1) < aR/2a for each j = 1,2,---,m’. By the definition
of the rough isometry, d(p(w;),p(w;j-1)) < aR/2+ b for each j =
1,2,-.- ,m/. Therefore, we have the consequence that

’

U B3a2aR(§0(wg))

=1

n m

7=0

.

is connected.

Suppose that there exist no sequences of hypersurfaces {Hg} sat-
isfying the above statement. Then we may assume that for some
sufficiently large R > 0, there exists a point y € (8Cgr(0’) N E) \
(U= U, Bsazar(#(z}))). And for such a point y € dCr(d') N E,
we can choose an arclength parametrized curve v : [0,00) — E\
Bpg(0') such that v(0) = y, v(t) — oo as t — oo, and Be(7[0,00)) N
(Uj=o U?; Boa2ar(0(z!))) = 0, where ¢ > 5a*(t + a + b). Then
from the definition of the rough isometry, we can choose a sequence
{#n} in D\ Bpg/q(0) such that d(p(zn),7(n)) < 7 for all n € N.
Therefore, there exists a curve ¢ : [0,00) — D\ Bg/a.(0) such that
o(t) — oo as t — 00, and 0[0,00) C Uneg Baar+b+1)(2n). It is easy to
prove that ¢(c[0,00)) C Bag2(r+ats)(7[0,00)). Since o(0) € B2,r(0)
and o(t) — oo as t — 00, d[0,00) N (8C2.r(0) N D) # @. But since
By (p(c[0,00))) C Be(v[0,00)) and

B, (p(|J U Bar(a))) € J U Baarar(v(=)),

j=01i=1 j=04i=1
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this is a contradiction. O

From Theorem 3.1 and the maximum principle, we have the conse-
quence that every positive harmonic function f on each end E being
roughly isometric to an end satisfying the conditions (V D), (P) and
(F'C) is asymptotically constant at infinity of E, i.e., there exists a
constant 0 < ¢ < oc¢ such that

lim f(z)=c.

z—00,zEF

We follow the program of Li and Tam [12], [13], [14] and [15] in proving
our main theorem.

THEOREM 3.5 (MAIN THEOREM). Let N be a complete Riemann-
ian manifold roughly isometric to a complete Riemannian manifold M
which satisfies the volume doubling condition (V D), the Poincaré in-
equality (P) and the finite covering condition (FC) at infinity of each
end. Suppose that M has l-nonparabolic ends and s-parabolic ends,
respectively. Then the dimension of the space spanned by harmonic
functions which are bounded on one side at infinity of each end of N
equals [+s. And the dimension of the space of bounded harmonic func-
tions on N equals!l. Furthermore, every bounded harmonic function on
M has the finite Dirichlet integral. If M has at least one nonparabolic
end, then the dimension of the space spanned by positive harmonic
functions on N equals | + s. In particular, if M has only parabolic
ends, then every positive harmonic function on N is constant.

Proof. From Lemma 2.1, Lemma 2.2 and Lemma 2.3, N has I-
nonparabolic ends and s-parabolic ends, respectively. Let Ey, Fa,--- ,
E; be nonparabolic ends of N and e;,es,--- , e, be parabolic ends of
N, respectively.

From Theorem 3.1, the nonparabolicity and the maximum principle,
foreachi=1,2,--- 1, there exists a unique positive harmonic function
fi on N satisfying the followings:

(1) limEEifi(a:) =1 and

T—00,T

(2) lim  fi(z) =0, where k=1,2,--. |l and k # 3.

z—00,rEE
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In particular, each f; has the finite Dirichlet integral, i.e., [\ |V f;|* <
0o. And for each j = 1,2,--- s, there exists a positive and bounded
harmonic function h; on N satisfying the followings:

(1) lim  hj(z) = oo,

T—00,T€e;

(2)  lm__ hj(z) =0, where s = 1,2,---,l and

r—00,EF;

(3) 0< h; <c<ooon N\ e; for some constant ¢ > 0.
j 3

Moreover, from Theorem 3.1, the parabolicity and the maximum prin-
ciple, we have that each h; is unique up to a positive scalar multiple.
(For detail, see [12].) It is easy to prove that the set {f;,h;| i =
1,2,---,l and j=1,2,---,s} is linearly independent.

From Theorem 3.1 and the maximum principle, we have that for
any nonnegative harmonic function f on N, either

li = li =c<
stoes? () = 00 0, f(F) = e <o,

for each end F of N. On the other hand, from Theorem 3.1 and the
definition of the nonparabolicity, we can construct a harmonic function
u; on each nonparabolic end F; \ Bg,(0’) satisfying the followings:

Au; =0 on E;\ Bgy(0);

(3.3) u; =0 on 0Bg,(0)NE;
m1_1_)11;()%(:1:) =1, (z€E;),
where ¢ =1,2,--. ,l. Let f be a nonnegative harmonic function on N,

then by (3.3) and the maximum principle, there exists a constant d;
such that
hi =d; < 00,

e I =i <o
for i=1,2,-.-,l. And using the parabolicity and the maximum prin-
ciple, we can prove that any two bounded harmonic functions with
same data at infinity of each nonparabolic end are equal to each other.
Thus if f is a bounded harmonic function on N, then

14
i=1
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i.e., the space of all bounded harmonic functions is generated by {f;| ¢
=1,2,--,1}
In the case that f is a positive harmonic function, we still have

!
z—}c}ci:}cleEk (f - ; difi) (x) =0,

for each k = 1,2,---,1, and f — Zézl d;f; is bounded below on N.
Assume that h = f — Zé:l d; f; is unbounded only on parabolic ends
€1,€e2, - ,¢e for some 1 <t <s.

We will prove that there exist constants 0 < ¢; < oo such that
h —c;jh; is bounded on e; for each j = 1,2,--- ,t. Then h— Z§'=1 cih;
is bounded on N and still

t
li h— R =
e lmep (P20t | @ =0
for all K = 1,2,---,l. From Theorem 3.1, the parabolicity and the
. D ¢

maximum principle, we have h = ijl cjhj on N.

From Theorem 3.1 and the maximum principle, we can choose a
constant 0 < ¢; < 0o such that

(3.4) h > cjhj or h < cjh; on e
foreach j = 1,2,--. ,t. First, in the case that cjhj—h > 0one;, we will
prove our claim. Set ¢; = inf {c;|c;jh; > h on e;}. Then 0 < ¢; < 00

because h > 0.
If ¢;hj —h > 0 is still unbounded on e;, then, by (3.4) and the

definition of ¢;, there exists a constant 0 < c;. < oo such that
(¢ — §hj < h.

Set ¢; = sup{c;|cjh; < h on e;}. Since ¢jh; —h > 0 is unbounded on
€, by the strong maximum principle, we have

¢hj —h >0 and h —¢h; >0 one;.
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By (3.4), there exists a constant 0 < ¢} < oo such that
cihs —h > c{(h —E;h;) or ¢ih; —h < cj(h —E;hy) on ej,
ie.,

"
QJ + Cj C]
1"
¢ + 1

r3
¢; +CiCj

hi 2 hor o

h; < h one;.

From the definition of ¢; and ¢;, we have ¢; = ¢, ie., c;h; = h = Cjh;
on e;. This is a contradiction. Thus h — ¢;h; must be bounded on e,
where 0 < ¢; < 0o. The remains are same.

Suppose that N has only parabolic ends e;,es,--- ,es. Then there
exist harmonic functions kg, k3,- -+ ,ks on N such that k; — b;G(0’,)
is bounded on e; for some b; > 0, k; + G(0/,) is bounded on e;, and
k; is bounded on any other ends, where j = 2,3,--- ,s and G(¢o/,) is a
symmetric Green’s function on N. (See [13].) It is easy to prove that
{1, k1, ke, -- ,ks} is linearly independent.

Let h be a harmonic function on N which is bounded on one side
at infinity of each end. Then for each 7 = 2,3,-.- s, there exists a
positive harmonic function v; on e; such that v; = 0 on 0Bg,(0') Ne;
and h — ¢;v; is bounded on e;, where € is +1 or —1 depending on
whether A is bounded above or below on e;. Using Theorem 3.1 and
the maximum principle, we can choose a constant ¢; such that v; = ¢;g;
for each 7 = 2,3,---,s. Thus h — (e2cgka + €3csks + -+ + €scsks) is
bounded on one side on N. Since N is parabolic, there exists a constant
¢ such that h = ¢+ €3¢0ks + €3c3ks + - -+ + €5¢5ks.

In particular, by the maximum principle and the parabolicity, every
positive harmonic function must be constant. a

COROLLARY 3.6. Let N be a complete Riemannian manifold rough-
ly isometric to a complete Riemannian manifold M which has nonneg-
ative Ricci curvature outside a compact set and the finite first Betti
number. Suppose that M has l-nonparabolic ends and s-parabolic
ends, respectively. Then the dimension of the space spanned by har-
monic functions which are bounded on one side at infinity of each end
of N equals |+ s. And the dimension of the space spanned by bounded
harmonic functions on N equals |. Furthermore, every bounded har-
monic function on M has the finite Dirichlet integral. If M has at
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least one nonparabolic end, then the dimension of the space spanned
by positive harmonic functions on N equals | + s. In particular, if M
has only parabolic ends, then every positive harmonic function on N
Is constant.

COROLLARY 3.7. Let N be a complete Riemannian manifold rough-
ly isometric to a complete Riemannian manifold M which is a con-
nected sum of complete Riemannian manifolds with nonnegative Ricci
curvature. Suppose that M has l-nonparabolic ends and s-parabolic
ends, respectively. Then the dimension of the space spanned by har-
monic functions which are bounded on one side at infinity of each end
of N equals l+s. And the dimension of the space spanned by bounded
harmonic functions on N equals . Furthermore, every bounded har-
monic function on M has the finite Dirichlet integral. If M has at
least one nonparabolic end, then the dimension of the space spanned
by positive harmonic functions on N equals l + s. In particular, if M
has only parabolic ends, then every positive harmonic function on N
is constant.

4. Applications

Recently, Kendall [11] obtained a remarkable result that if a do-
main manifold supports no nonconstant bounded harmonic functions,
then every bounded harmonic map from the domain manifold into a
regular geodesic ball is a constant map. Later, using the estimate in
[1], Sung, Tam and Wang [17] generalized Kendall’s result in such a
way that if every bounded harmonic function on a domain manifold
is asymptotically constant at infinity on each nonparabolic end, then
every harmonic map with bounded image is asymptotically constant
at infinity on each nonparabolic end, when the image is contained in a
geodesic ball, which lies inside the cut locus of the center of the ball.
Applying these facts to our case, we have the following theorem:

THEOREM 4.1. Let M be a complete Riemannian manifold being
roughly isometric to a complete Riemannian manifold satisfying the
conditions (V D), (P) and (FC) on each nonparabolic end. Let N
be a complete Riemannian manifold with sectional curvature bounded
from above by K > 0. Let U : M — N be a harmonic map such that
U(M) c By(0), where B,(0) is the geodesic ball of radius r centered at
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0 in N. If B,(0) lies inside the cut locus of 0, then U is asymptotically
constant at infinity of its nonparabolic ends.

In particular, if N is a simply connected complete Riemannian man-
ifold with nonpositive curvature, then any harmonic map from M to
N with bounded image must be asymptotically constant at infinity of
each nonparabolic end.

Moreover, if M has only parabolic ends, then the harmonic map U
is a constant map.

COROLLARY 4.2. Let M be a complete Riemannian manifold being
roughly isometric to a complete Riemannian manifold which has the
nonnegative Ricci curvature outside a compact set and the finite first
Betti number. Let N be a complete Riemannian manifold with sec-
tional curvature bounded from above by K > 0. Let U : M — N be
a harmonic map such that U(M) C B,.(0) where B,.(0) is the geodesic
ball of radius r centered at 0 in N. If B,.(0) lies inside the cut locus of
0, then U is asymptotically constant at infinity of each large end.

In particular, if N is a simply connected complete Riemannian man-
ifold with nonpositive curvature, then any harmonic map from M to
N with bounded image must be asymptotically constant at infinity of
each large end.

COROLLARY 4.3 (The Liouville Theorem). Let M be a complete
Riemannian manifold being roughly isometric to a complete Riemann-
ian manifold with nonnegative Ricci curvature. Let N be a complete
manifold with sectional curvature bounded from above by K > 0. Let
U : M — N be a harmonic map such that U(M) C B,(0), where B,.(0)
is the geodesic ball of radius r centered at 0 in N. If B,.(0) lies inside
the cut locus of 0,.then U is constant.

In particular, if N is a simply connected complete Riemannian man-
ifold with nonpositive curvature, then any harmonic map from M to
N with bounded image must be constant.

Using the estimate in [1], we have the existence and the uniqueness
theorem for bounded harmonic map as follows:

THEOREM 4.4. Let M be a complete Riemannian manifold being
roughly isometric to a complete Riemannian manifold satisfying the
conditions (VD), (P) and (FC) on each nonparabolic end and let
E., Es,--- ,E; be the nonparabolic ends of M. Let N be a complete
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Riemannian manifold with sectional curvature bounded from above by
K > 0 and let B.(0) be the geodesic ball of radius r centered at 0 in N.
If B,(0) lies inside the cut locus of 0, then for any points p1,pa,--- , D1
in B,(0), there exists a unique harmonic map U : M — N with finite
total energy such that U(M) C B,(0) and :z:-)cgnz}EE U(z) = p; for all

i=1,2,-- 1.

From Theorem 4.1 and Theorem 4.4, we have immediately the fol-
lowing corollary:

COROLLARY 4.5. Let M be a complete Riemannian manifold being
roughly isometric to a manifold satisfying the conditions (V D), (P)
and (F'C) on each nonparabolic end. Let N be a complete Riemannian
manifold with sectional curvature bounded from above by K > 0 and
let B,.(0) be the geodesic ball of radius r centered at 0 in N which
lies inside the cut locus of 0. Then every bounded harmonic map
U: M — B,(0) has the finite total energy.
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