POISSON INTEGRALS CONTAINED IN HARMONIC BERGMAN SPACES ON UPPER HALF-SPACE

HEUNGSU YI

ABSTRACT. On the setting of the upper half-space, H of the euclidean n-space, we consider the question of when the Poisson integral of a function on the boundary of H is a harmonic Bergman function and here we give a partial answer.

1. Introduction

The upper half-space $H=H_n$ is the open subset of $\mathbf{R}^n (n\geq 2)$ given by

$$H = \{(x, y) \in \mathbf{R}^n : y > 0\},\$$

where we have written a typical point $z \in \mathbf{R}^n$ as z = (x, y), with $x \in \mathbf{R}^{n-1}$ and $y \in \mathbf{R}$. We also identify \mathbf{R}^{n-1} with $\mathbf{R}^{n-1} \times \{0\}$; with this convention we have $\partial H = \mathbf{R}^{n-1}$. For $z = (x, y) \in H$ and $t \in \partial H$, set

$$P(z,t) = \frac{2}{n\sigma_n} \frac{y}{(|x-t|^2 + y^2)^{n/2}},$$

where σ_n denotes the volume of the unit ball in \mathbf{R}^n . The function P is called the Poisson kernel for the upper half-space. Then we can check easily that $P(\cdot,t)$ is positive and harmonic on H for each $t \in \partial H$, and that

$$\int_{\partial H} P(z,t) \, dt = 1$$

Received August 16, 1996. Revised October 15, 1996.

¹⁹⁹¹ AMS Subject Classification: Primary 31B05; Secondary 31B10, 30D55, 30D45.

Key words and phrases: Poisson Integrals, Harmonic Bergman Functions, Upper Half-Space.

This study is supported in part by Korean Ministry of Education through research fund.

for each $z \in H$.

For $1 \leq p < \infty$, $L^p(\partial H)$ denotes the space of Borel measurable functions on ∂H for which

$$||f||_p = \left(\int_{\partial H} |f(t)|^p dt\right)^{1/p} < \infty;$$

 $L^{\infty}(\partial H)$ consists of the Borel measurable functions f on ∂H for which $||f||_{\infty} < \infty$, where $||f||_{\infty}$ denotes the essential supremum norm on ∂H with respect to Lebesgue measure. The Poisson integral of $f \in L^p(\partial H)$, for any $p \in [1, \infty]$, is the function P[f] on H defined by

$$P[f](z) = \int_{\partial H} P(z, t) f(t) dt.$$

Because $P(z,\cdot)$ belongs to $L^q(\partial H)$ for every range of $q \in [1,\infty]$, the integral above is well-defined for any $z \in H$ and by passing the Laplacian thorough the integral above, we can show that P[f] is harmonic on H.

For $1 \le p < \infty$, we write b^p for the harmonic Bergman space consisting of all harmonic functions u on H such that

$$||u||_p = \left(\int_H |u|^p \, dV\right)^{1/p} < \infty$$

where dV denotes the volume measure on H, which we may write dz, dw, etc. The space b^p turns out to be a closed subspace of L^p , the Lebesgue space on H, and thus b^p is a Banach space (In particular, b^2 is a Hilbert space).

From a standard Hardy space theory, we know that for $f \in L^p(\partial H)$, P[f] is a harmonic Hardy function (See [1] for details). In this paper, we consider the question of when the Poisson integral of a function $f \in L^p(\partial H)$ (with some restrictions) belongs to b^p . The case p=2 is the simplest and here we give a complete answer in terms of the Fourier transform (Theorem 3.1); perhaps surprisingly, the Poisson integral of a function in $L^1(\partial H) \cap L^2(\partial H)$ always belongs to b^2 when n > 2, but hardly ever when n = 2.

2. Preliminary

In this section, we review some preliminary results from [1], [2]. By the mean value property and Jensen's inequality, one can easily verify that

$$(2.1) |u(x,y)|^p \le \sigma_n^{-1} y^{-1} ||u||_p^p$$

holds for every range of $p \in [1, \infty)$ and for all $u \in b^p$ and $(x, y) \in H$. It follows from inequality (2.1) that norm convergence in b^p implies uniform convergence on compact subsets of H. Thus, b^p is a Banach space and in particular b^2 is a Hilbert space.

For a function u on H and $\delta > 0$, let $\tau_{\delta}u$ denote the function on H defined by

$$\tau_{\delta}u(z) = u(z + (0, \delta)).$$

Now we can show easily that if $u \in b^p$, then $\tau_{\delta}u \to u$ in the norm of b^p as $\delta \to 0$.

Equation (2.1) also shows that if $u \in b^p$, then u is bounded on each proper half-space contained in H, hence is the Poisson integral of its boundary values on each such half-space. In other words,

$$\tau_{\delta} u = P[u(\cdot, \delta)]$$

on H for each $\delta > 0$ (see [1] for details). From (2.2), we can show that if $u \in b^p$, then the integrals $\int_{\partial H} |u(x,y)|^p dx$ increases as y decreases and hence $\tau_{\delta}u \in h^p$ for every $\delta > 0$, where h^p is the Hardy L^p -space of functions v harmonic on H such that

$$||v||_{h^p} = \sup_{y>0} \left(\int_{\partial H} |v(x,y)|^p dx \right)^{1/p} < \infty.$$

The Poisson integral gives us a nice way to derive an important property of b^1 Bergman functions, called the b^1 cancellation property. The proof of the following theorem can be founded in [2] but here we also give a proof of it for the reader's convenience.

THEOREM 2.1. If $u \in b^1$, then

$$\int_{\partial H} u(x,y) \, dx = 0$$

for every y > 0.

PROOF. First note that $u(\cdot,y) \in L^1(\partial H)$ for every y > 0, because $u \in b^1$ and $\int_{\partial H} |u(x,y)| dx$ increases as y decreases. Note also that $\tau_{\delta}u = P[u(\cdot,\delta)]$ for each fixed $\delta > 0$ and so

(2.3)
$$\int_{H} \tau_{\delta} u(z) dz = \int_{0}^{\infty} \int_{\partial H} P[u(\cdot, \delta)](x, y) dx dy$$
$$= \int_{0}^{\infty} \int_{\partial H} \int_{\partial H} P((x, y), s) u(s, \delta) ds dx dy$$
$$= \int_{0}^{\infty} \int_{\partial H} u(s, \delta) ds dy,$$

where we have used Fubini's theorem and the fact that

$$\int_{\partial H} P((x,y),s)dx = 1.$$

Since the inner integral in (2.3) is independent of y, we must have

$$\int_{\partial H} u(s,\delta) \, ds = 0$$

and this completes the proof.

As an easy consequence of Theorem 2.1, we have $\int_H u(w)dw = 0$.

3. Poisson Integrals Contained in b^p

Finding functions in b^p that display specified boundary behavior is not as simple as for the Hardy-space h^p . In the latter setting, we simply

design an appropriate L^p -function on ∂H and then take its Poisson integral. This suggests the following question: Given $f \in L^p(\partial H)$, when does P[f] lie in b^p ?

In the case p=2 we give a complete answer (Theorem 3.1 below) in terms of the Fourier transform. For any $f \in L^2$, we let \hat{f} denote the Fourier transform of f. Here the expression $A(f) \approx B(f)$ means that there are two positive constants c and C such that the nonnegative quantities A(f) and B(f) satisfy

$$cA(f) \le B(f) \le CA(f)$$

for all f under consideration.

THEOREM 3.1. For $f \in L^2(\partial H)$,

(3.1)
$$||P[f]||_2 \approx \left(\int_{\partial H} |\hat{f}(x)|^2 |x|^{-1} dx \right)^{1/2}.$$

PROOF. Letting $f \in L^2(\partial H)$, we can view P[f](x,y) as a convolution over ∂H :

$$P[f](x,y) = P_y * f(x) = \int_{\partial H} P_y(x-s)f(s) ds,$$

where the definition of P_y should be clear from context. We thus have

$$\begin{split} \int_{H} |P[f](w)|^{2} \, dw &= \int_{0}^{\infty} \int_{\partial H} |(P_{y} * f)(x)|^{2} \, dx \, dy \\ &= \int_{0}^{\infty} \int_{\partial H} |(P_{y} * f)(x)|^{2} \, dx \, dy \\ &= \int_{0}^{\infty} \int_{\partial H} |\hat{P}_{y}(x)\hat{f}(x)|^{2} \, dx \, dy. \end{split}$$

Now, modulo some constants (depending only on n and the normalization of the Fourier transform), we have $\hat{P}_y(x) = e^{-y|x|}$ (see [3], page 16). Reversing the order of integration in the last integral above now gives the desired result. \square

Theorem 3.1 shows that an interesting dichotomy occurs between the cases n=2 and n>2. Let $f\in L^1\cap L^2(\partial H)$. Then \hat{f} is continuous on ∂H . Integrating in polar coordinates, we see for such an f that the right side of (3.1) is always finite when n>2, but is finite when n=2 only if $\hat{f}(0)=0$, i.e., only if $\int_{\partial H} f(x) dx=0$.

We have not obtained necessary and sufficient conditions for Poisson integrals of L^p -functions to lie in b^p for any $p \neq 2$. However, the following result handles the case of P[f] when f has compact support, at least for 1 .

THEOREM 3.2. Let $p \in (1, \infty)$, let $f \in L^p(\partial H)$, and assume that f has compact support. (a) If p > n/(n-1), then $P[f] \in b^p$. (b) If $1 , then <math>P[f] \in b^p$ if and only if $\int_{\partial H} f(x) dx = 0$.

PROOF. Note that if $f \in L^p(\partial H)$, then a standard Hardy-space theory shows that

$$\int_0^R \int_{\partial H} |P[f](x,y)|^p \, dx \, dy \le R \int_{\partial H} |f(x)|^p \, dx < \infty$$

for any R > 0. (True even if p = 1.) Thus we only need to worry about whether $P[f] \in L^p(\{|z| > R\} \cap H)$ for R large.

Let $\lambda = \int_{\partial H} f(x) dx$, set $c = 2/(n\sigma_n)$, and let K denote the support of f. For large z = (x, y), we have

$$\begin{aligned} \left| P[f](z) - c\lambda \frac{y}{|z|^n} \right| &= \left| c \int_K f(s) \left(\frac{y}{|z - s|^n} - \frac{y}{|z|^n} \right) ds \right| \\ &\leq C \frac{y}{|z|^{n+1}} \int_K |f(s)| ds, \end{aligned}$$

where C is a constant depending on n and K. For large R>0, the function $y/|z|^{n+1}$ belongs to $L^p(\{|z|>R\}\cap H)$ for all p>1, while $y/|z|^n\in L^p(\{|z|>R\}\cap H)$ if and only if p>n/(n-1). Both parts of the theorem now follow easily. \square

The case p=1 seems difficult. The following proposition indicates that the cancellation condition $\int_{\partial H} f(x) dx = 0$ is far from being sufficient to guarantee that $P[f] \in b^1$, even if f is smooth and has compact support.

PROPOSITION 3.3. (n = 2): If $f \in L^1(\mathbf{R})$, f is odd, f is not identically 0, and $f \geq 0$ on $(0, \infty)$, then P[f] is not in b^1 .

PROOF. Let x > 0. Then

$$P[f](x,x) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(s) \frac{x}{(x-s)^2 + x^2} ds$$

$$= \frac{1}{\pi} \int_{0}^{\infty} f(s) \left(\frac{x}{(x-s)^2 + x^2} - \frac{x}{(x+s)^2 + x^2} \right) ds$$

$$= \frac{1}{\pi} \int_{0}^{\infty} f(s) \frac{4x^2s}{((x-s)^2 + x^2)((x+s)^2 + x^2)} ds.$$

By replacing s by xs in (3.2), we have

$$P[f](x,x) = \frac{4}{\pi} \int_0^\infty f(xs) \frac{s}{((1-s)^2 + 1)((1+s)^2 + 1^2)} ds$$

$$\geq \frac{4}{10\pi} \int_0^1 f(xs)s \, ds$$

$$= \frac{4}{10\pi x^2} \int_0^x f(s)s \, ds.$$

Because f is not identically 0, we have $P[f](x,x) \geq C/x^2$ for large x. A similar estimate holds for rays from the origin close to the ray y = x. Thus for large z lying in a sector of H, we have

$$|P[f](z)| \ge \frac{C}{|z|^2},$$

which implies P[f] is not in b^1 . \square

References

- 1. S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.
- W. Ramey and H. Yi, Harmonic Bergman Functions on Half-Spaces, Tran. Amer. Math. Soc. 348 (1996), 633-660.
- E. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.

Department of Mathematics Research Institute of Basic Science Kwangwoon University Seoul 139-701, Korea e-mail: hsyi@euler.kwangwoon.ac.kr