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POISSON INTEGRALS CONTAINED IN HARMONIC
BERGMAN SPACES ON UPPER HALF-SPACE

HEUNGSU Y1

ABSTRACT. On the setting of the upper half-space, H of the euclidean n-
space, we consider the question of when the Poisson integral of a function
on the boundary of H is a harmonic Bergman function and here we give
a partial answer.

1. Introduction

The upper half-space H = H,, is the open subset of R"(n > 2) given
by
H={(z,y) e R": y >0},

where we have written a typical point z € R™ as z = (x,y), with z €
R""! and y € R. We also identify R"~! with R"~! x {0}; with this
convention we have 9H = R"™'. For z = (z,y) ¢ H and t € 0H, set

2 y

P(Zat) - no, (}‘T _ HQ +y2)71/2:

where o,, denotes the volume of the unit ball in R®. The function P is
called the Poisson kernel for the upper half-space. Then we can check
easily that P(-,t) is positive and harmonic on H for each t € 8H, and

that
/ Pl t)dt =1
dH
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for each z € H.

For 1 < p < oo, LP(GH) denotes the space of Borel measurable func-
tions on OH for which

11 = ([ 1rcor dt)”p <o

L>°(0H) consists of the Borel measurable functions f on 0H for which
I lloc < o0, where || f]|oo denotes the essential supremum norm on 0H
with respect to Lebesgue measure. The Poisson integral of f € LP(GH ),
for any p € [1,00], is the function P[f] on H defined by

PUf)(z) = /6 P

Because P(z,-) belongs to LY(OH) for every range of ¢ € [1,00], the
integral above is well-defined for any =z € H and by passing the Laplacian
thorough the integral above, we can show that P[f] is harmonic on H.

For 1 < p < oo, we write b” for the harmonic Bergman space consist-
ing of all harmonic functions u on H such that

1/p
Hqu=</ |u|Pdv) < o0
H

where dV denotes the volume measure on H, which we may write dz, dw,
etc. The space b? turns out to be a closed subspace of LP, the Lebesgue
space on H, and thus b? is a Banach space (In particular, b* is a Hilbert
space).

From a standard Hardy space theory, we know that for f € LP(OH),
P[f] is a harmonic Hardy function (See [1] for details). In this paper,
we consider the question of when the Poisson integral of a function f €
LP(0H) (with some restrictions) belongs to b?. The case p = 2 is the
simplest and here we give a complete answer in terms of the Fourier
transform (Theorem 3.1); perhaps surprisingly, the Poisson integral of
a function in LY(8H) N L?(90H) always belongs to b* when n > 2, but
hardly ever when n = 2.
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2. Preliminary

In this section, we review some preliminary results from [1], [2]. By
the mean value property and Jensen’s inequality, one can easily verify
that

(2.1) u(z,y)|P <oty ull?

holds for every range of p € [1,00) and for all v € b and (z,y) € H. It
follows from inequality (2.1) that norin convergence in b? implies uniform
convergence on compact subsets of H. Thus, b7 is a Banach space and
in particular b? is a Hilbert space.

For a function v on H and ¢ > 0, let 75u denote the function on H

defined by
tsu(z) = u(z + (0,6)).

Now we can show easily that if u € b7, then T5u — u in the norm of b7
as 6 — Q.

Equation (2.1) also shows that if u € b7, then u is bounded on each
proper half-space contained in H, hence is the Poisson integral of its
boundary values on each such half-space. In other words,

(2.2) Tsu = Plu(-,0)]

on H for each é > 0 (sec [1] for details). From (2.2), we can show that
if u € bP, then the integrals [, [u(z,y)|P dr increases as y decreases
and hence T5u € h? for every é > 0, where h? is the Hardy LP-space of
functions v harmonic on H such that

1/p
ot = sup ([ otepar) <o
y>0 8H

The Poisson integral gives us a nice way to derive an important property
of b' Bergman functions, called the b! cancellation property. The proof
of the following theorem can be founded in [2] but here we also give a
proof of it for the reader’s convenience.
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THEOREM 2.1. Ifu € b', then

/ u(z,y)dz =0
o0H

for every y > 0.

PROOF. First note that u(-,y) € L'(0H) for every y > 0, because
u € b' and [, |u(x,y)|dr increases as y decreases. Note also that
Tsu = Plu(-,8)] for each fixed § > 0 and so

/ Tsu(z) / /{)H u( (r,y)dxdy
(2.3) l/ LHLQ (z,y), s)uls, 8)ds dz dy
ZEA uLHugaéﬁkd%

where we have used Fubini’s theorem and the fact that

P((z,y),s)de = 1.
8H

Since the inner integral in (2.3) is independent of y. we must have

/ u(s,8)ds =0
oH

and this completes the proof. O

As an easy consequence of Theorem 2.1, we have fH u(w)dw = 0.

3. Poisson Integrals Contained in 5?

Finding functions in " that display specified boundary behavior is
not as simple as for the Hardy-space h?. In the latter setting, we simply
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design an appropriate LP-function on @H and then take its Poisson in-
tegral. This suggests the following question: Given f € LP(OH), when
does P[f] lie in b7?

In the case p = 2 we give a complete answer (Theorem 3.1 below)

in terms of the Fourier transform. For any f = L2, we let f denote
the Fourier transform of f. Here the expression A(f) ~ B(f) means
that there are two positive constants ¢ and C such that the nonnegative

quantities A(f) and B(f) satisfy
cA(f) < B(f) < CA(f)

for all f under consideration.

THEOREM 3.1. For f € L*(0H),
1/2
3. P ] Fe) |z~ de .
(3.1) 1PLAI (/BHIf( e )

PROOF. Letting f € L%(0H), we can view P[f](z,y) as a convolution
over OH:

Plfl(z,y) = P, = f(z) = /a Pyfe = o)) ds

where the definition of P, should be clear from context. We thus have

/ |P[f)(w)]?* dw = / / 2)|* dx dy
oH

=[] up e
o JaH

:/ / |Py(z)f(2)|* de dy.
o JoH

Now, modulo some constants (depending only on n and the nornaliza-
tion of the Fourier transform), we have Py(x) = ¢~ Y17l (see [3], page 16).
Reversing the order of integration in the last integral above now gives
the desired result. O
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Theorem 3.1 shows that an interesting dichotomy occurs between the
casesn = 2 and n > 2. Let f € L' N L% 8H). Then f is continuous
on 0H. Integrating in polar coordinates, we see for such an f that the
right side of (3.1) is always finite when n > 2, but is finite when n = 2
only if f(0) =0, i.e., only if Joy flz)dz =0.

We have not obtained necessary and sufficient conditions for Poisson
integrals of LP-functions to lie in ? for any p # 2. However. the following
result handles the case of P[f] when f has compact support, at least for
1 <p<oo.

THEOREM 3.2. Let p € (1,00), let f € LP(OH), and assume that
f has compact support. (a) If p > n/(n — 1), then P[f] € b". (b) If
1<p<n/(n~1), then P[f] € b if and only if [, f(z)dz = 0.

PROOF. Note that if f € LP(OH ), then a standard Hardy-space the-
ory shows that

R
/ / IPLf](a,y)| do dy < R / F(2)? de < o
1] oH o0H

for any R > 0. (True even if p = 1.) Thus we only need to worry about
whether P[f] € L?({|z] > R} N H) for R large.

Let A = [, f(x)dz, set ¢ = 2/(noy,), and let K denote the support
of f. For large z = (z,y), we have

c/ f(s)( v Y ) ds
N |z —sl* 2
< Cppir [, Vol

where C is a constant depending on n and I. For large R > 0, the
function y/|z|™*! belongs to LP({|z] > R} N H) for all p > 1, while
y/|z|™ € LP({|z| > R} N H) if and only if p > n/(n — 1). Both parts of
the theorem now follow easily. 0O

\Pm( -t

The case p = 1 seems difficult. The following proposition indicates
that the cancellation condition faH f(z)dx = 0 is far from being suffi-
cient to guarantee that P[f] € b', even if f is smooth and has compact
support.
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PROPOSITION 3.3. (n=2):If f € LY(R), f is odd, f is not identi-
cally 0, and f > 0 on (0,00), then P[f] is not in b'.

Proor. Let £ > 0. Then
P(f)(z,2) = / H6) oy

32 :F/o f”((-f—sj)cﬂ ”(H;)C?Hz) -

1 [ 4x°s
= ?/0 e o o r o ) ™

By replacing s by zs in (3.2), we have

S

PUM”- / e A s s @
> 1071'/ f(zs)sds
= 107rm2/0 f(s)sds.

Because f is not identically 0, we have P[f](z.z) > C/x? for large z.
A similar estimate holds for rays from the origin close to the ray y = z.
Thus for large z lying in a sector of H, we have

|PLfI=)] =

K

which implies P[f] is not in ¥'. O
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