• Title/Summary/Keyword: 2022 revised science national curriculum

Search Result 66, Processing Time 0.021 seconds

Improving the 2022 Revised Science Curriculum: Elementary School "Earth and Universe" Units (2022 개정 과학과 교육과정 개선 방향 고찰 - 초등학교 '지구와 우주' 영역을 중심으로 -)

  • Yu, Eun-Jeong;Park, Jae Yong;Lee, Hyundong
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.173-185
    • /
    • 2022
  • The purpose of this study is to present a reflective review of the earth and universe units from the revised elementary curriculum of 2007-2015 and suggest changes in the 2022 revised curriculum. For this purpose, we conducted an FGI with earth science educators and elementary school teachers regarding the content elements and system, the achievement standards and inquiry activity composition, and the vertical and horizontal curriculum connectivity. Free response and weighted hierarchical analysis items were incorporated into the FGI to ensure logical consistency of the inductively derived improvement. This analysis revealed that the composition of units by grade group had been unevenly distributed among each of the "earth systems" until the 2015 revised curriculum was finalized. Furthermore, the basic concept was still insufficient. We suggest that achievement standards centered on the learning content and skills must state specific scientific core competencies, and inquiry activities should include rigorous critical thinking, student written responses, and student inquiry and analysis. In the hierarchical analysis items, FGI emphasized the inclusion of essential content elements rather than reduction of content elements, understanding-oriented concept learning rather than interest-centered phenomenon learning, basic concept division learning before integration between subjects, and expanding vertical-horizontal connectivity rather than repeating and advancing learning. There is a limit to the generalizing the suggestions proposed in this study to the common opinion of elementary earth science experts. However, since the main vision of the 2022 revised curriculum is to gather opinions through educational entities' participation in a variety of educational subjects, it is suggested that our results should be incorporated as one of the opinions proposed for the 2022 curriculum revision.

Analysis of the 2022 Revised Science Curriculum Grades 3-4 Achievement Standards Based on Bloom's New Taxonomy of Educational Objectives and Comparison to the 2015 Revised Curriculum (Bloom의 신교육목표분류에 따른 2022 개정 과학과 교육과정 초등학교 3~4학년군 성취기준 분석 및 2015 개정 교육과정과의 비교)

  • Kim, Woo-Joong;Kim, Dong-Suk;Shin, Young-Joon;Kwon, Nan-Joo;Oh, Phil-Seok
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.3
    • /
    • pp.353-364
    • /
    • 2024
  • The purpose of this study is to analyze the achievement standards for grades 3-4 of the 2022 revised science curriculum and identify the goals of science education for grades 3-4 of the 2022 revised curriculum, as well as provide implications for the development of the science textbooks for grades 3-4 and the direction of teaching for teachers in the field. For this purpose, 57 achievement standards of the Science Department 2022 revised curriculum for grades 3-4 were analyzed as to their knowledge dimensions and cognitive processes according to Bloom's Taxonomy of the New Educational Objectives. In cases where an achievement standard is a double sentence or combines two or more knowledge dimensions or cognitive process dimensions, we separated the sentences after having consulted with a group of experts and divided the achievement standards into 57 sentences. We then analyzed the frequency of the categorization of concepts and descriptors by comparing them with the previously studied elementary science standards from the 2015 revised curriculum. The main findings of the study are as follows. First, in the knowledge dimension, the "factual knowledge" accounted for 50 items (86%), compared to "conceptual knowledge" (10%), and "procedural knowledge" (4%), and "metacognitive knowledge" was not analyzed at all. Second, in terms of the cognitive processes, "Understanding" was the highest at 60% with 34 items. It was followed by "applying" with 11%, "creating" with 19%, "evaluating" with 15%, and "analyzing" and "remembering" with 6%. Third, when analyzing the descriptors, "I can explain" was the highest with 9%, followed by "comparison" with 6%, and "practice" and "classification" with 5%. Fourth, compared to the 2015 revised curriculum, "conceptual knowledge" was reduced and "factual knowledge" was overwhelmingly increased. Fifth, in the cognitive process dimension, "understanding,' has increased significantly, while the other cognitive process dimensions have decreased. Conclusions and implications based on these findings are as follows: the focus of the Science Department for grades 3-4 in the 2022 revised curriculum is heavily weighted toward the "factual knowledge," with "understanding" dominating the cognitive process dimensions. As a result, many concepts and applications have been reduced. Based on the results of the comparison of the descriptors with the results of the 2015 revised curriculum, the implications for the development of the science textbooks for grades 3-4 of the 2022 revised curriculum were discussed, and so were the implications of the curriculum for the field.

Analysis of the Relationship Between the 2022 Revised Middle Science Curriculum and Korean Science Education Standards (KSES) (2022 개정 중학교 과학과 교육과정과 과학교육표준(KSES)의 연관성 분석)

  • Dojun Jung;Minsu Kim
    • Journal of Science Education
    • /
    • v.48 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • The Korean Science Education Standards (KSES) were developed to support the establishment of a domestic national science curriculum to respond to future social and environmental changes as an action plan to improve scientific literacy in the context of science education. In this study, we analyzed the relationship between KSES and the 2022 revised middle science curriculum focusing its learning contents and learning objectives and sought effects of the successful implementation of the curriculum. As a result, the content system of the 2022 revised middle science curriculum was highly related to the categories of knowledge in KSES. Attempts to deal with the content related to the nature of science was also confirmed through content elements in science and society domains. In the case of achievement standards, it was focused on some areas of the performance expectations in KSES, but the level of statement of the achievement standards closely matched the level of middle school students as suggested by KSES. From these results, it was possible to confirm the high relationship between the 2022 revised middle science curriculum and KSES, as well as the possibility of using KSES as an international indicator for establishing future science education plans.

Exploration of High School Science Teachers' Perceptions on Instruction and Assessment of Science II Elective Courses in the 2015 Revised Curriculum

  • Kwak, Youngsun
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.557-566
    • /
    • 2022
  • The purpose of this study was to examine the status of the field application of the Science II career electives with the application of the 2015 revised curriculum up to the 3rd year of high school. This study focused on examining high school science teachers' perceptions of the student-participatory class and process-centered assessment in Science II subjects, which are career-intensive high school science electives. A total of 192 science teachers responded to the survey questionnaire, and 12 teachers participated in interviews. In the in-depth interviews conducted to supplement the survey results, questions were asked about changes in the overall class, the status of student-participatory classes, and changes in the assessment of Science II subjects due to the emphasis on process-centered assessment. The main research results included teachers' perceptions of changes in teaching and assessment methods with the application of the revised curriculum, the degree to which the eight skills used in Science II classes develop the key competencies of science, and the teaching and assessment methods commonly used in Science II classes. Science teachers generally agreed with the purpose and necessity of introducing student-participatory classes and process-centered assessment, which are the core purpose of the 2015 revised curriculum. However, they had difficulties in practice due to the excessive content of Science II subjects. Problems were also encountered with securing objectivity and fairness during assessments and the operation of online science classes due to COVID-19.

Ways to Restructure Science Convergence Elective Courses in Preparation for the High School Credit System and the 2022 Revised Curriculum (고교학점제와 2022 개정 교육과정에 대비한 과학과 융합선택과목 재구조화 방안 탐색)

  • Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.112-122
    • /
    • 2021
  • The goal of this study is to explore ways to restructure Convergence Elective Courses in science in preparation for the high school credit system, ahead of the 2022 revised science curriculum. This study started from the problem that the 2015 revised science curriculum has not guaranteed science subject choice for students with non-science/engineering career aptitudes. To this end, a survey was conducted by randomly sampling high schools across the country. A total of 1,738 students responded to the questionnaire of 3 science elective courses such as Science History, Life & Science, Convergence Science. In addition, in-depth interviews with 12 science teachers were conducted to examine the field operation of these three courses, which will be classified and revised as Convergence Elective subjects in the 2022 revised curriculum. According to the results of the study, high school students perceive these three courses as science literacy courses, and find these difficult to learn due to lack of personal interest, and difficulties in content itself. The reason students choose these three courses is mainly because they have aptitude for science, or these courses have connection with their desired career path. Teachers explained that students mainly choose Life & Science, and both teachers and students avoid Science History because the course content is difficult. Based on the research results, we suggested ways to restructure Convergence Electives for the 2022 revised curriculum including developing convergence electives composed of interdisciplinary convergence core concepts with high content accessibility, developing convergence electives with core concepts related to AI or advanced science, developing module-based courses, and supporting professional development of teachers who will teach interdisciplinary convergence electives.

Exploring Development Achievement of the 2022 Revised High School Earth Science Curriculum to Cultivate Transformative Competency (변혁적 역량 함양을 위한 2022 개정 고등학교 과학과 지구과학 교육과정 개발 성과 탐색)

  • Youngsun Kwak;Jong-Hee Kim;Hyunjong Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.17 no.1
    • /
    • pp.49-59
    • /
    • 2024
  • In this study, we investigated the philosophical background and progress of the 2022 revised curriculum development in the high school earth science field. Research that was not covered in the research report includes the relevance of the transformative competency of OECD Education 2030, and that core ideas and achievement standards are organized around knowledge understanding, process functions, and value attitudes that constitute the learning compass needle. In addition, the composition of core ideas and Earth science electives in light of the understanding-centered curriculum, and IB type inquiry-based teaching and learning. Main research results include that the 2022 revised Earth science curriculum emphasized the student agency to foster the transformative competency and scientific literacy, and the curriculum document system in the field of earth science uses a learning compass needle. In addition, based on the understanding-centered curriculum, core ideas of Earth science were derived, and elective courses were organized to help students reach these core ideas. Also, IB-type inquiry-based teaching and learning was emphasized to foster student agency with knowledge construction competency. Based on the research results, slimming of the national and general level curriculum, the need to develop process-centered assessment methods for value and attitudes, the need for curriculum backward design, and ways to develop student agency through inquiry-based teaching and learning were suggested.

Comparing the 2015 with the 2022 Revised Primary Science Curriculum Based on Network Analysis (2015 및 2022 개정 초등학교 과학과 교육과정에 대한 비교 - 네트워크 분석을 중심으로 -)

  • Jho, Hunkoog
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.178-193
    • /
    • 2023
  • The aim of this study was to investigate differences in the achievement standards from the 2015 to the 2022 revised national science curriculum and to present the implications for science teaching under the revised curriculum. Achievement standards relevant to primary science education were therefore extracted from the national curriculum documents; conceptual domains in the two curricula were analyzed for differences; various kinds of centrality were computed; and the Louvain algorithm was used to identify clusters. These methods revealed that, in the revised compared with the preceding curriculum, the total number of nodes and links had increased, while the number of achievement standards had decreased by 10 percent. In the revised curriculum, keywords relevant to procedural skills and behavior received more emphasis and were connected to collaborative learning and digital literacy. Observation, survey, and explanation remained important, but varied in application across the fields of science. Clustering revealed that the number of categories in each field of science remained mostly unchanged in the revised compared with the previous curriculum, but that each category highlighted different skills or behaviors. Based on those findings, some implications for science instruction in the classroom are discussed.

Exploring Ways to Improve Integrated Science and Science Laboratory Experiments in Preparation for the 2022 Revised Curriculum (2022 개정 교육과정에 대비한 과학과 통합과학 및 과학탐구실험 교육과정 개선 방안 탐색)

  • Kwak, Youngsun;Shin, Youngjoon
    • Journal of Science Education
    • /
    • v.45 no.2
    • /
    • pp.143-155
    • /
    • 2021
  • The goal of this study is to examine the Integrated Science and Science Laboratory Experiments of the 2015 revised curriculum applied since 2018, and to explore ways to improve these two subjects in preparation for the 2022 revised curriculum. A survey was conducted by randomly sampling high schools across the country, with a total of 192 science teachers participating. In addition, 12 high school science teachers were selected as focus group, and in-depth interviews were conducted to investigate ways to restructure common science courses for the next curriculum. Main research results include that most schools were operated in 6~8 units for Integrated Science, and the teachers in charge of Integrated Science per class averaged 2~3 over the three years. For Science Laboratory Experiments, it has operated for a total of two semesters, one unit per semester, and it was found that several science teachers are in charge of Science Laboratory Experiments to fill the insufficient number of hours regardless of major. In the in-depth interview, science teachers argued that Integrated Science should be reduced and restructured by strengthening key competencies in preparation for the high school credit system. Based on the research results, ways to reorganize Integrated Science focused on big ideas, ways to construct common science courses based on fundamental science concepts that can guide elective courses, the necessity of career guidance through common science courses, and the necessity of strengthening teacher professionalism for teaching interdisciplinary and multidisciplinary subjects were suggested.

Consideration on the Contents of the Electromagnetism Domain in the 2022 Revised Elementary School Science Curriculum (2022 개정 초등학교 과학과 교육과정의 전자기 영역 내용 구성에서 고려해야 할 것)

  • Cheong, Yong Wook;Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.186-198
    • /
    • 2022
  • With the science curriculum about to be revised in 2022, this study aimed to guide curriculum revision by addressing suggested approaches to the electromagnetism education in elementary school science curriculum. The core concepts of electromagnetism are "electric field" and "magnetic field" as a medium of force, but the current curriculum does not properly describe the core concepts of electromagnetism. Mechanics and electromagnetism should be linked in elementary schools to form science curriculum based on core concepts to solve this problem. Additionally, the nine aspects of technology extracted in this study offer various educational contexts to match the development of engineering technology based on electromagnetism. However, the current curriculum does not comprise these various contexts and focuses on the limited content of electric circuits using light bulbs. Therefore, it is necessary to expand the scope of the curriculum to better mirror real-life technology. Through the use of more diverse materials and contexts, the scope and level of STS education as well as conceptual learning could be expanded. Finally, in the case of electric circuit learning, various issues such as difficulty in connecting electric circuits and electric field concepts, representativeness of electric circuit, students' learning difficulty, and phenomena-oriented learning should be considered.

Concerns and Difficulties in Applying the National Curriculum in the Process of Developing Science Textbooks: Focused on 'Integrated Science' of the 2022 Revised National Science Curriculum (과학 교과서 개발 과정에서 교육과정 적용에의 고민과 어려움 -2022 개정 과학과 교육과정의 '통합과학'을 중심으로-)

  • Bongwoo Lee;Jaeyong Park;Jeongwoo Son;Ki-Young Lee;Wonho Choi;Kew-Cheol Shim
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.2
    • /
    • pp.219-229
    • /
    • 2024
  • The purpose of this study is to analyze the concerns and difficulties encountered by authors involved in the development of integrated science textbooks. Specifically, it focuses on their experiences with understanding and implementing the 2022 revised science curriculum. We collected 89 opinions from textbook authors and categorized them into several key areas: understanding the terminology and descriptors provided in the curriculum, structuring learning content, inquiries and activities, and the depth and scope of learning content. The analysis revealed that the most difficulty encountered by the textbook authors was in defining the level and scope of learning content. Many also expressed concerns and difficulties related to the ambiguity of terms and predicates. In terms of the composition of learning content, difficulties were identified in concerning the repetitive descriptions of achievement standards and the discrepancy between the arrangement of achievement standards and the flow of learning. Regarding inquiries and activities, there were experiments presented that were difficult to experience or actually implement, along with limitations in activity composition due to the need to optimize learning volume. Given the importance of high-quality textbooks for effective science education at the national level, it is crucial to establish effective communication channels between curriculum developers and textbook authors. Additionally, a robust support system for textbook development should be established.