펠릭스 쿨라인은 현대 기하학이 나아갈 새로운 방향을 제시하여 현대 수학에 큰 영향을 미쳤을 뿐만 아니라 수학 교육의 개혁을 주도하여 유능한 과학자들이 탄생하는 데 크게 기여하였다. 2004년 7월 국제 수학 교육 위원회(ICME)에서 처음으로 펠릭스 클라인 메달이 수여된 것을 계기로, 클라인이 에를랑겐 대학교에 교수로 취임되면서 강연하였던 ‘에를랑겐 계획’을 소개하고 그가 현대 수학과 수학 교육에 끼친 영향을 고찰하고자 한다.
수학의 유용성을 더욱 강화하기 위해 수학사를 수학 교육에 도입하는 것에 관한 관심이 근래에 더욱 고조되고 있는 추세이다. 수학사가 학교 수학에 미치는 영향을 살펴보는 것은 수학사를 어떠한 측면으로 학교 수학에 가져올 것인가에 대한 통찰력을 제공할 것이다. 이를 위하여 학교 수학에서 수학사의 역할을 크게 인지적, 정의적, 사회문화적 측면에 입각하여 학생의 사고 발달과 학생의 이해 측면 그리고 학습 태도 발달과 동기 부여 마지막으로 인간적ㆍ사회문화적 경험에 미치는 영향력과 타당성을 제시함으로써 수학사가 수학 교육의 정규 커리큘럼이 되어야 하는 근거를 제시하고자 했다. 또한 우리에게 산적된 문제들, 이를테면 교수학적 접근이나 수학사적 주제들의 체제적, 구조적 접근 등도 함께 살펴 보았다.
${\lambda}$-연산은 ‘다시쓰기 규칙’으로 정의되는 계산을 위해 함수들이 형성되고, 결합되고, 활용되는 수학적 형식 체계이다. 컴퓨터과학의 발전과 더불어 많은 프로그래밍 언어들이 ${\lambda}$-연산을 원리로 삼고 있다. 나아가서, ‘커리-하워드 대응’ 덕분에 미제 연역에 의해 수행된 증명과 컴퓨터 프로그래밍 사이에 대응 관계를 설정할 수 있게 되었다. 이 글의 목적은 교육적인 차원에서 아직은 잘 알려져 있지 않은 주제를 대중화시키는 데에 있다. 논리학과 컴퓨터 과학에서 L-연산의 영향은 차후의 연구과제로 남아 있다.
본 연구에서는 슈타이너$.$레무스(Steiner-Lehmus) 정리에 대한 다양한 증명을 찾아 이들 증명에 사용된 수학적 개념, 정리, 방법들을 고찰하며, 몇 가지 증명에 대해서는 기존의 기술 방법을 개선한 좀더 구체적인 형태로 기술하였다. 이를 통해, 이등변삼각형의 흥미로운 성질인 슈타이너$.$레무스 정리에 대한 다양한 증명 방법을 밝히고, 중등학교 수학교육의 질적이고 양적인 확장을 위한 기초 자료를 제공할 것이다.
가정법은 중세 서양에서 상용된 대수 방정식의 산술적 해법이며, 보통 그 근원을 중국 수학의 영부족술이라 말한다. 이와 관련하여 중국 및 조선의 산학서와 이집트, 아랍, 인도 및 서양의 수학 교재를 고찰함으로써 수학사에 있어 그 역사적 자취를 추적하고 두 가지 사실을 확인한다. 첫째, 중국의 영부족술은 일차연립방정식의 해법인 방정술과는 구별되어 일차방정식으로 해석되는 특정 수량 관계를 다루기 위한 계산 알고리즘이며, 둘째, 동양의 영부족술과 서양의 가정법의 명확한 관계는 전자에서의 가정을 포함하는 응용 부분이 후자에서의 이중 가정법과 상응한다는 것이다. 나아가 가정법의 수학적 가치를 수학 교육적 가치로 환원하기 위한 제안을 포함한다.
In this paper we shall give a slight generalization of J. Vukman's Theorem. And show from the result that the image of a continuous linear Jordan derivation on a noncommutative Banach algebra A is contained in the radical under the condition [D(x),x]E(x) ${\in}$ rad(A) for all $x{\in}A$ . And we show some properties of the derivations on noncommutative Banach algebras.
In this paper we use measure theory to solve a wide range of second-order boundary value ordinary differential equations. First, we transform the problem to a first order system of ordinary differential equations(ODE's)and then define an optimization problem related to it. The new problem in modified into one consisting of the minimization of a linear functional over a set of Radon measures; the optimal measure is then approximated by a finite combination of atomic measures and the problem converted approximatly to a finite-dimensional linear programming problem. The solution to this problem is used to construct the approximate solution of the original problem. Finally we get the error functional E(we define in this paper) for the approximate solution of the ODE's problem.
이 글에서는 20세기의 문제 해결의 역사에 대하여 개관하고, 21세기에 새로운 경향으로 주목받고 있는 모델링 관점에서의 수학 문제 해결에 대하여 알아보았다. 전통적인 문제 해결에서는 상황과 분리되어 있는 문제의 조건을 수학적 표현으로 바꾸는 번안 기술의 습득을 주요 관심사로 다루었다. 반면에, 모델링 관점에서 문제 해결은 해결할 필요가 있는 현실적인 문제 상황에서 출발하여 수학적인 정리 수단으로 재조직하고, 수학적 상황에서 문제를 해결하여 다시 실제 현상에 적용하는 과정을 따른다. 따라서, 학생들은 문제를 해결해 가는 과정에서 수학화를 경험하게 되고, 수학을 배우게 되는 이점이 있다.
For a finite group G, #Cent(G) denotes the number of cen-tralizers of its clements. A group G is called n-centralizer if #Cent( G) = n. and primitive n-centralizer if #Cent(G) = #Cent(${\frac}{G}{Z(G)$) = n. In this paper we compute the number of distinct centralizers of some finite groups and investigate the structure of finite groups with Qxactly SLX distinct centralizers. We prove that if G is a 6-centralizer group then ${\frac}{G}{Z(G)$${\cong}D_8$,$A_4$, $Z_2{\times}Z_2{\times}Z_2$ or $Z_2{\times}Z_2{\times}Z_2{\times}Z_2$.
이 연구는 학과 과제와 기말 프로젝트에 있는 문제들 중에서 컴퓨터를 활용하여 수학적 문제 해결을 해 가는 세 명의 예비 교사를 연구 조사하였다 모든 연구 참여자들의 활동과 컴퓨터를 활용한 문제 해결 과정을 관찰하고 촬영하였다. 가능한 경우 예비 교사들의 탐구활동 전과 후 및 탐구활동 중에 개별적인 면담을 하였다. 자료수집 방법은 관찰, 면담, 현장 기록, 제출과제, 컴퓨터 작업, 오디오와 비디오 테이프를 사용하였다. 수학적 문제 해결 초기 단계에서는, 모든 연구 참여자들이 그래프와 데이터를 사용하여 모델 만들기, 사인 함수의 일반적 개념에 대하여 절차적 지식과 개념적 지식이 약하게 형성되어 있었으나 컴퓨터를 활용한 수학적 문제 해결 활동을 통하여 그들은 절차적 지식과 개념적 지식을 강하게 구성하였고 그들을 적절하게 연계시킬 수 있었다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.