• Title/Summary/Keyword: 0/1 constraint

Search Result 170, Processing Time 0.032 seconds

The SIMP-SRV Method for Stiffness Topology Optimization of Continuum Structures

  • Zhou, Xiangyang;Chen, Liping;Huang, Zhengdong
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.41-49
    • /
    • 2007
  • In density-based topology optimization, 0/1 solutions are sought. Discrete topological problems are often relaxed with continuous design variables so that they can be solved using continuous mathematical programming. Although the relaxed methods are practical, grey areas appear in the optimum topologies. SIMP (Solid Isotropic Microstructures with Penalization) employs penalty schemes to suppress the intermediate densities. SRV (the Sum of the Reciprocal Variables) drives the solution to a 0/1 layout with the SRV constraint. However, both methods cannot effectively remove all the grey areas. SRV has some numerical aspects. In this work, a new scheme SIMP-SRV is proposed by combining SIMP and SRV approaches, where SIMP is employed to generate an intermediate solution to initialize the design variables and SRV is then adopted to produce the final design. The new method turned out to be very effective in conjunction with the method of moving asymptotes (MMA) when using for the stiffness topology optimization of continuum structures for minimum compliance. The numerical examples show that the hybrid technique can effectively remove all grey areas and generate stiffer optimal designs characterized with a sharper boundary in contrast to SIMP and SRV.

Evaluation of Fracture Toughness and Constraint Effect of Cruciform Specimen under Biaxial Loading (이축하중을 받는 십자형 시편의 파괴인성 및 구속효과 평가)

  • Kim, Jong Min;Kim, Min Chul;Lee, Bong Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • Current guidance considers that uniaxially loaded specimen with a deep crack is used for the determination of the ductile-to-brittle transition temperature. However, reactor pressure vessel is under biaxial loading in real and the existence of deep crack is not probable through periodic in-service-inspection. The elastic stress intensity factor and the elastic-plastic J-integral which were used for crack-tip stress field and fracture mechanics assessment parameters. The difference of the loading condition and crack geometry can significantly influence on these parameters. Thus, a constraint effect caused by differences between standard specimens and a real structure can over/underestimate the fracture toughness, and it affects the results of the structural integrity assessment, consequentially. The present paper investigates the constraint effects by evaluating the master curve $T_0$ reference temperature of PCVN (Pre-cracked Charpy V-Notch) and small scale cruciform specimens which was designed to simulate biaxial loading condition with shallow crack through the fracture toughness tests and 3-dimensional elastic-plastic finite element analyses. Based on the finite element analysis results, the fracture toughness values of a small scale cruciform specimen were estimated, and the geometry-dependent factors of the cruciform specimen considered in the present study were determined. Finally, the transferability of the test results of these specimens was discussed.

TIME-OPTIMAL BANG-BANG TRAJECTORIES USING BIFURCATION RESULT

  • Shin, Chang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.553-567
    • /
    • 1997
  • This paper is concerned with the control problem $$ \dot{x}(t) = F(x) + u(t)G(x), t \in [0,T], x(0) = 0, $$ where F and G are smooth vector fields on $R^n$, and the admissible controls u satisfy the constraint $$\mid$u(t)$\mid$ \leq 1$. We provide the sufficient condition that the bang-bang trajectories having different switching orders intersect.

  • PDF

The Leisure Activity Pattern and Effects of Leisure Constraints on Leisure Satisfaction of Adolescents (청소년의 여가활동 특성과 여가장애에 따른 여가만족도 차이)

  • Lee Eun-Hee;Min Hyun-Sun
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.12 s.202
    • /
    • pp.231-251
    • /
    • 2004
  • The purpose of this study us to determine the adolescents' leisure activity pattern, leisure constraints and leisure satisfaction and to identify the relevant variables. The subjects were middle and high school students. The data was collected by using the questionnaire and the final 741 cases were analyzed by SPSS Win 10.0 program. The major findings were as follows: 1. The adolescents' leisure activity hours were 2.27hours/day(weekday), 4.20hours/day(Saturday) and 5.35hours/day(Sunday). On weekdays, female students spent more time for leisure activity than male students. The most frequent activities were watching TV and playing computer. 2. The adolescents' leisure constraints were social-economic, psychological and situational. The degree of the adolescents' situational constraint was the highest. 3. The adolescents' leisure satisfactions were leisure use, leisure condition and leisure meaning. The adolescents' degree of leisure meaning satisfaction was relatively high. 4. The major related variable influencing the leisure satisfaction were psychological constraint, situational constraint and gender.

Robust algorithm for estimating voltage stability by the modified method of sensitivity index dP/de of real value on voltage vector (전압벡터의 유효분 감도지표 dP/de 수정법에 의한 견고한 전압안정도 평가에 관한 연구)

  • 송길영;김세영;김용하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • Recently, much attention has been paid to problems which is concerned with voltage instability phenomena and much works on these phenomena have been made. In this paper, by substituting d $P_{k}$ d $e_{k}$ ( $v^{\rarw}$= e +j f) for $P_{k}$ in conventional load flow, direct method for finging the limit of voltage stability is proposed. Here, by using the fact that taylor se- ries expansion in .DELTA. $P_{k}$ and .DELTA. $Q_{k}$ is terminated at the second-order terms, constraint equation (d $P_{k}$ d $e_{k}$ =0) and power flow equations are formulated with new variables .DSLTA. e and .DELTA.f, so partial differentiations for constraint equation are precisely calculated. The fact that iteratively calculated equations are reformulated with new variables .DELTA.e and .DELTA.f means that limit of voltage stability can be traced precisely through recalculation of jacobian matrix at e+.DELTA.e and f+.DELTA.f state. Then, during iterative process divergence may be avoid. Also, as elements of Hessian mat rix are constant, its computations are required only once during iterative process. Results of application of the proposed method to sample systems are presented. (author). 13 refs., 11 figs., 4 tab.

  • PDF

A Study on a Fuzzy Berth Assignment Programming Problem (퍼지 반박시정계획 문제에 관한 연구)

  • 금종수;이홍걸;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.4
    • /
    • pp.59-70
    • /
    • 1996
  • A berth assignment problem has a direct impact on assessment of charges made to ships and goods. In this paper, we concerned with of fuzzy mathematical programming models for a berth assignment problem to achieved an efficient berth operation in a fuzzy environment. In this paper, we focus on the berth assignment programming with fuzzy parameters which are based on personal opinions or subjective judgement. From the above point of view, assume that a goal and a constraint are given by fuzzy sets, respectively, which are characterized by membership functions. Let a fuzzy decision be defined as the fuzzy set resulting from the intersection of a goal and constraint. This paper deals with fuzziness in all parameters which are expressed by fuzzy numbers. A fuzzy parameter defined by a fuzzy number means a possibility distribution of the parameters. These fuzzy 0-1 integer programming problems are formulated by fuzzy functions whose concept is also called the extension principle. We deal with a berth assignment problem with triangular fuzzy coefficients and propose a branch and bound algorithm for solving the problem. We suggest three models of berth assignment to minimizing the objective functions such as total port time, total berthing time and maximum berthing time by using a revised Maximum Position Shift(MPS) concept. The berth assignment problem is formulated by min-max and fuzzy 0-1 integer programming. Finally, we gave the numerical solutions of the illustrative examples.

  • PDF

Optimal Conveyor Selection Problem on a Diverging Conveyor Junction Point (컨베이어 분기점에서의 최적 인출 컨베이어 선택 문제)

  • Han, Yong-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.118-126
    • /
    • 2009
  • This research investigates the problem of minimizing setup costs in resequencing jobs having first-in, first-out(FIFO) constraints at conveyorized production or assembly systems. Sequence changing at conveyor junctions in these systems is limited due to FIFO restriction. We first define the general problem of resequencing jobs to workstations satisfying precedence relationships between jobs(Generalized Sequential Ordering Problem, GSOP). Then we limit our scope to FIFO precedence relationships which is the conveyor selection problem at a diverging junction(Diverging Sequential Ordering Problem, DSOP), modeling it as a 0-1 integer program. With the capacity constraint removed, we show that the problem can be modeled as an assignment problem. In addition, we proposed and evaluated the heuristic algorithm for the case where the capacity constraint cannot be removed. Finally, we discuss the case study which motivated this research and numerical results.

Low-power Scheduling Framework for Heterogeneous Architecture under Performance Constraint

  • Li, Junke;Guo, Bing;Shen, Yan;Li, Deguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2003-2021
    • /
    • 2020
  • Today's computer systems are widely integrated with CPU and GPU to achieve considerable performance, but energy consumption of such system directly affects operational cost, maintainability and environmental problem, which has been aroused wide concern by researchers, computer architects, and developers. To cope with energy problem, we propose a task-scheduling framework to reduce energy under performance constraint by rationally allocating the tasks across the CPU and GPU. The framework first collects the estimated energy consumption of programs and performance information. Next, we use above information to formalize the scheduling problem as the 0-1 knapsack problem. Then, we elaborate our experiment on typical platform to verify proposed scheduling framework. The experimental results show that our proposed algorithm saves 14.97% energy compared with that of the time-oriented policy and yields 37.23% performance improvement than that of energy-oriented scheme on average.

A New Ship Scheduling Set Packing Model Considering Limited Risk

  • Kim, Si-Hwa;Hwang, Hee-Su
    • Journal of Navigation and Port Research
    • /
    • v.30 no.7
    • /
    • pp.561-566
    • /
    • 2006
  • In this paper, we propose a new ship scheduling set packing model considering limited risk or variance. The set packing model is used in many applications, such as vehicle routing, crew scheduling, ship scheduling, cutting stock and so on. As long as the ship scheduling is concerned, there exits many unknown external factors such as machine breakdown, climate change and transportation cost fluctuation. However, existing ship scheduling models have not considered those factors apparently. We use a quadratic set packing model to limit the variance of expected cost of ship scheduling problems under stochastic spot rates. Set problems are NP-complete, and additional quadratic constraint makes the problems much harder. We implement Kelley's cutting plane method to replace the hard quadratic constraint by many linear constrains and use branch-and-bound algorithm to get the optimal integral solution. Some meaningful computational results and comments are provided.

An Estimation of Constraint Factor on the ${\delta}_t$ Relationship (J-적분과 균열선단개구변위에 관한 구속계수 m의 평가)

  • 장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.24-33
    • /
    • 2000
  • This paper investigates the relationship between J-integral and crack tip opening displacement, ${\delta}_t$ using Gordens results of numerical analysis. Estimation were carried out for several strength levels such as ultimate, flow, yield, ultimate-flow, flow-yield stress to determine the influence of strain hardening and the ratio of crack length to width on the $J-{\delta}_t$ relationship. It was found that for SE(B) specimens, the $J-{\delta}_t$ relationship can be applied to relate J to ${\delta}_t$ as follows $J=m_j{\times}{\sigma}_i{\times}{\delta}_t$ where $m_j=1.27773+0.8307({\alpha}/W)$, ${\sigma}_i:{\sigma}_U$, ${\sigma}_{U-F}={\frac{1}{2}} ({\sigma}_U+{\sigma}_F$), ${\sigma}_F$, ${\sigma}_F}$ $Y=({\sigma}_F+{\sigma}_Y)$, ${\sigma}_Y$

  • PDF