
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May. 2020 2003
Copyright ⓒ 2020 KSII

This work was supported in part by the State Key Program of National Natural Science Foundation of China under
Grant No.61332001; the National Natural Science Foundation of China under Grant No. 61272104, 61472050 and
61802162. The Applied Basic Research Program of Sichuan province under Grant No. 2014JY0257, 2015GZ0103
and 2014-HM01-00326-SF. The Science and Technology Foundation of Guizhou Province under Grant NO.
[2019]1447. the Natural Science Foundation of the Ministry of Education of Guizhou Province under Grant NO.
[2019]071, [2019]205, [2018]080, and [2018]439; the Nature Science Foundation of Qiannan under Grant NO.
[2018]05; The Nature Science Foundation Qiannan Normal University for Nationalities under Grant NO.
QNSY2018BS012, QNSY2018021and QNSYRC201714.

http://doi.org/10.3837/tiis.2020.05.008 ISSN : 1976-7277

Low-power Scheduling Framework for
Heterogeneous Architecture under

Performance Constraint

Junke Li1,2, Bing Guo1*, Yan Shen3 and Deguang Li1
1 College of Computer Science, Sichuan University

Chengdu, Sichuan,6100675 - China
[e-mail: ljk2006ljk@163.com,guobbing@scu.edu.cn, lideguang.00@163.com]

2 School of Computer and Information, Qiannan Normal Nniversity for Nationalities
Duyun, Guizhou, 558000 - China

[e-mail: ljk2006ljk@163.com]
3 School of Control Engineering, University of Information Technology

Chengdu, Sichuan, 610225 – China
[e-mail: Yshen426@163.com]

*Corresponding author: Bing Guo

Received April 14, 2019; revised October 31, 2019; accepted January 21, 2020;
published May 31, 2020

Abstract

Today’s computer systems are widely integrated with CPU and GPU to achieve considerable
performance, but energy consumption of such system directly affects operational cost,
maintainability and environmental problem, which has been aroused wide concern by
researchers, computer architects, and developers. To cope with energy problem, we propose a
task-scheduling framework to reduce energy under performance constraint by rationally
allocating the tasks across the CPU and GPU. The framework first collects the estimated
energy consumption of programs and performance information. Next, we use above
information to formalize the scheduling problem as the 0-1 knapsack problem. Then, we
elaborate our experiment on typical platform to verify proposed scheduling framework. The
experimental results show that our proposed algorithm saves 14.97% energy compared with
that of the time-oriented policy and yields 37.23% performance improvement than that of
energy-oriented scheme on average.

Keywords: Energy saving, heterogeneous architecture, integer programming, resource
allocation, scheduling framework

2004 Li et al.: Low-power Scheduling Framework for Heterogeneous
Architecture under Performance Constraint

1. Introduction

Multi-core CPU and many-core GPU have become the most important processors in
computer systems. As a general-purpose processor, the design of CPU must balance the needs
of various tasks; therefore, most of the transistors in CPU are used to make huge caches and
complex control logic, and the operating units do not occupy much of the area. At present,
increasing the complexity of the control logic, enlarging cache size and increasing the
frequency have not much help improving the performance of a single core, so more CPU cores
have integrated into a single chip. Meanwhile, due to the features of parallel graphics
rendering, GPU also has a large number of parallel processors naturally. How to make rational
use of multi-core processing resources of CPU and GPU becomes the focus of current research,
therefore, a large number of articles [1], [2], [3] have compared and discussed their advantages
and disadvantages.

For achieving high performance, computer architects, programmer and researchers are
now moving away from the debate on CPU or GPU which has the better performance toward
CPU and GPU collaboration to get the higher performance than single one[4], [5]. The CPU
and GPU collaboration refers to intelligently combine the features of CPU and GPU together
to achieve higher computing power by rationally allocating each program across them to avoid
and reduce idle time of CPU and GPU and then get superior performance compared with that
of a single one. This paradigm is called as heterogeneous computing (HC) by most scholars;
this system is known as heterogeneous computing system (HCS). In HCS, CPU and GPU are
collectively referred to as processing unit (PU) in order to describe convenience. HC has
attracted everyone's attention, for example, in TOP500 and Green500, most supercomputers
have CPU and GPU [6], [7].

In 2015, the performance of Tianhe2 that ranked Top 1 in Top500 list researches
54.9PFLOPS. Although heterogeneous multi-core system has higher performance, its power
consumption is generally higher. The power of Tianhe2 is up to 17.81 MW, after opening the
cooling system reaches 24MW, and electricity cost of working one hour is up to more than ten
millions [6]. The problem caused by power consumption, such as rising cost of chip packaging
and cooling, increasing the probability of IC’s (integrated circuit) invalidation under high
temperature (if temperature increase every 10 degrees, the system failure rate will be doubled
typically), decreasing of the system reliability, has become the important obstacle that blocks
the development of high performance. Therefore, it has important significance to build an
effective mechanism to reduce the energy consumption of HCS.

In order to reduce the energy consumption of HCS, many scholars have put forward a
variety of methods, models to solve it. At present, according to the granularity of program, the
problem can be divided into single program allocation on PUs and multi-programs allocation
on PUs. The former refers to allocating single program that can be seen as several workloads
to each PU by consuming minimum energy (ASP); the latter involves allocating a set of
multi-programs that each program can be seen as several workloads to each PU by consuming
smallest energy (AMP). In General, ASP is only for a few specific programs and these
programs needs to be changed to adapt to each PU processing mode; however, AMP has wide
adaptability and only considers the desired goals without changing the program. Although the
advantage of AMP is obvious, existing researches also has deficiency, such as assuming the
power is constant[33], getting the parameters by pre-running before scheduling[34], achieving
energy savings in a performance-optimized manner[32]. In order to effectively alleviate the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2005

above problems as well as make HC be widely used to adapt to the diversity of programs, this
article discusses the AMP approach. At present, in the HC field, most scheduling strategies
focus on the current tasks, historical tasks and performance improvement performed by PUs,
and lack the global allocation of tasks within a given time. In order to improve the relevant
theory of HC scheduling method, this paper studies the energy saving of HC under
performance constraints from a global perspective. From this point of view, we propose a task
scheduling framework with power-aware, low overhead and good portability for HC. It first
obtains the number of tasks and corresponing power consumption on each PU, and then
formalizes the energy optimization problem as the 0-1 knapsack problem under performance
constraints. For getting the number of tasks, we can count the nunmber of task in program, and
for getting the power consumption, we can use existing methods[14]-[17]. In solving the
global minimization problem, from mathematics perspective, 0-1 programming has been
proved to be an effective method to deal with the objective functions and constraints. From the
point of view of the computer, 0-1 programming has been considered to be effective and
convenient in programming practice. Therefore, our scheduling framework is suitable for
tackling this problem. To the best of our knowledge, the energy saving framework is first
proposed by us.

This paper makes the following contributions.
 We analysis the current research wroks of heterogeneous computing system and point out

their deficiency;
 We propose task scheduling framework for saving energy in heterogeneous system which

consists the CPU and GPU;
 We formalize the program scheduling problem into integer programming which takes

performance into consideration. After solving the problem, we can get the result which
can be run on corresponding PUs;
The rest of paper is structured as follows. Section 2 shows related works; energy saving

framework is introduced in section 3; section 4 presents the program scheduling method; our
proposed method is verified and compared in section 5; section 6 summarizes the work of this
paper.

2. Related Work
There are many works focus on the heterogeneous computing. Some of them improve the
performance of system, while others focus on their energy issue. From previous studies related
to our work, we conclude these approaches as following groups.

Heterogeneous computing for performance: Augonnet et al. [8] proposes a uniform
runtime execution model—StarPU for allocating single program to different PUs. It has five
strategies to get higher performance: Greedy policy with support for priorities, Greedy policy
without support for priorities, Greedy policy based on Work Stealing, Random weighted by
processor speeds and Heterogeneous Earliest Finish Time. Like [8], Luk et al. [9] proposes the
Qilin framework for mapping single program on an HCS which includes CPU and GPU. It
provides an API for writing parallelizable programs and uses a training phase to create a
performance model for each task on each PU. Using different inputs and a linear performance
model, optimal workload division can be computed and dynamic compilation is done to
instantiate the chosen distribution. Belviranli et al. [10] presents a dynamic load-balancing
technique for loop iterations on HCS. Their technique works in two phases. In the first phase,
the relative performance of PUs is estimated by experimenting with different task size

2006 Li et al.: Low-power Scheduling Framework for Heterogeneous
Architecture under Performance Constraint

allocations to the PU. In the second phase, the remainder and majority of computations are
performed based on the relative performance values obtained in the first phase. The second
phase utilizes a self-scheduling algorithm to achieve load balancing. The proposed algorithm
dynamically resizes blocks to minimize underutilization, thus yielding the shortest execution
time. Grewe et al. [11] proposes a machine learning approach to predict optimal processing
resource allocation for an Opencl program based on the analytical result of compiler. It uses
Clang compiler and PCA to get the features of program and then inputs these features to the
two-stage classier that consists of SVM to get the final scheduling results. Boratto et al. [12]
uses static scheduling to divide the workload of matrix computation on a CPU and a GPU for
solving the problem of landform attributes representation. Bernabé et al. [13] proposes a
workload allocation approach for accelerating the 3D-Fast Wavelet Transform. This approach
first profiles performance of CPU and GPU and then allocates the workload to them based on
the proportion of their performance. Jiménez et al. [14] proposes a scheduling method for
performance based on the performance history. It compares the performance of proposed
approach with that of Fist-Free, First-Come-First-Served, and the experiments show that the
proposed method has higher performance than that of other methods.

Heterogeneous computing for Energy-aware system: Li et al. [17] proposes an energy
saving approach for GPU using the BP neural networks to guide the DVFS. Paul et al. [18]
relies on coordinating DVFS for both CPU and GPU to realize a coordinated energy
management algorithm for integrated CPU-GPU systems. These papers mainly focus on the
DVFS technology and don’t consider the task scheduling. Wang et al. [19] studies the energy
saving of PCM and DRAM memory in the system and proposes a two-phase approach to solve
hybrid main memory address mapping problem. Wang et al. [20] studies the energy
consumption optimization problem of real-time streaming applications in multiprocessor
system. Considering transition overhead, inter-core communication, discrete voltage levels
and utilizing the DVS and DPM technology, it proposes a two-phase approach to solve above
problem. Liu et al. [21] proposes a technique to improve the efficiency of large scale
heterogeneous clusters (including several CPU-GPU nodes) based on the waterfall model.
Their technique changes the possible energy states of busy, spare and sleep for each node. In
addition using three states to save energy, it also makes use of task scheduling on available
nodes to improve performance and adjusts CPU voltage to save energy. Machovec et al. [23]
first uses the information, such as the utility functions presented in [22] to express the
performance of system, an estimated time for computing time matrix and an average power
consumption matrix to establish utility per energy heuristic approach for scheduling, and then
designs, analyzes and compares it with four utility-aware heuristic methods, three FCFS-based
methods and a random method. At the same time, an energy filtering method is proposed to
limit the maximum energy consumption of each PU. Oxley et al. [24] studies the problem of
static resource allocation for multiple independent tasks in a heterogeneous cluster system
environment. This article define energy robustness as the probability that the energy budget is
not violated and makespan robustness as the probability a makespan deadline is not violated
and then model the execution time of program by probability density function. Based on the
above information, authors design and analyze several energy aware resource allocation
methods under energy and performance constraints.

Above approaches are conducted on cluster environment, while our work is on a single
heterogonous node which consists of CPU and GPU. Liu et al. [25] proposes a method of
allocating the High Performance Linpack program to CPU, GPU and FPGA. It uses linear
programming to allocate the workload of each processing resource to achieve the purpose of
energy saving after obtaining the performance parameters of program by the profiler and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2007

getting the parameters of PU by pre-running. The proposed method needs to manually rewrite
the code of the target PUs after obtaining the assigned load ratio for each PU. Ma et al. [26]
proposes an energy management framework based on the characteristics of the single load to
be distributed in the CPU and GPU for load balancing and reducing idle time and idling energy
for HCS. The framework also scales the frequency and voltage on CPU and GPU respectively
to reduce energy consumption. Barik et al. [28] proposes an energy-aware scheduler (EAS)
method of allocating a single program to the CPU and GPU for reducing power consumption.
This article uses the information, such as the power of program that got by polynomial
approximation, the characteristics of program that got by profiling present in [27] and the
length of execution time(i.e., memory- or compute-bounded, short or long-burst) to schedule
the single program and then adjust theα parameter to achieve the purpose of saving energy. In
order to achieve the goal of energy saving, Ma et al. [29] proposes a holistic energy
management framework for single program on CPU-GPU architectures. The framework has
two layers; the first layer is the dynamic allocation; it distribute single program to CPU and
GPU based on the characteristics of the program. The second layer is the frequency scaling
layer; it adjusts the frequency of the processor to save energy. In [29], four kinds of dynamic
allocation schemes for assigning single program (Simple Heuristic with fixed step size, an
Improved Heuristic with adaptive step size, and two binary search-style algorithms) are
compared and analyzed respectively and their advantages and disadvantages are analyzed.
Totoni et al. [30] proposes a method of assigning a single program to a CPU and a GPU for
energy saving. It studies the effect of different mapping policy and demonstrates that software
pipelining can really improve the energy efficiency. Kiran et al. [31] studies mapping
programs to heterogeneous multicores using different criteria such as performance, power and
energy, and proposes an approach to select optimal mapping for a given program based on its
profiling result. Wang et al. [32] proposes a power-efficient work distribution method for
single application on a CPU-GPU heterogeneous system. Their method could coordinate
inter-processor work distribution and scale frequency of per-processor to minimize energy
consumption under a given scheduling length constraint, which uses linear method to predict
execution time of each PUs. These approaches are designed for single program, while our
work focuses on multi-programs.

Based on the [14], Choi et al. [33] points out the shortcomings of Alternate-assignment
scheduling(AA), First-Free scheduling(FF) and Performance-History Scheduling
methods(PH), and then proposes the estimated-execution-time scheduling(EET) mode after
adding the remaining time table. By considering the time of subsequent tasks, the experiments
show that the performance of EET scheduling is better than that of AA, FF and PH. Due to the
performance improvement makes EET consume less energy than other methods. Hamano et al.
[34] presents a dynamic scheduling energy saving method for allocating multi-programs on
heterogeneous systems. Their method first computes the speedup ratio; then the energy delay
product (EDP) is calculated and the program is allocated to the corresponding processor with
the smallest EDP value. The above procedure is repeated until all programs have been
allocated. This paper assumes that the power consumption is constant during program
execution. Mark et al. [35] demonstrates a method of optimizing energy efficiency for multiple
interdependent tasks under HCS. Their method takes the energy consumption of each task on
CPU and GPU into consideration, and then uses directed acyclic graph to construct a
scheduling method with minimum energy consumption. It is also considered in [35] that both
CPU and GPU in the system can be turned off without overhead in idle state. Jang et al. [36]
demonstrates joint optimization of both workload and power budget partitioning between the
CPU and the GPU for single-programmed workloads and analyzes potential throughput

2008 Li et al.: Low-power Scheduling Framework for Heterogeneous
Architecture under Performance Constraint

improvement of adaptive, workload-aware power allocation schemes for multi-programmed
workloads on HCS. After that, authors propose a runtime algorithm that can determine optimal
or near optimal workload and power budget partitioning for single-programmed workload and
determines optimal Voltage/Frequency settings for multiple programs running concurrently.
Although Hamano et al. [34] has multi programs allocation, it use simple allocating method
and focus on selecting optimal Voltage/Frequency for CPU and GPU.

In summary, the energy saving technologies can be divided into two categories, one for
allocating single workload and one for allocating multi-programs. In this paper, we mainly
focus our attention on saving energy of allocating multi-programs. For tackling this problem,
current existing works pay too much attention to a single task, mainly reduce the execution
time, assume constant power for each PU, solve dependence on each program by using DAG
and aim at DVFS technology for simple allocation. These works lack directly solving energy
consumption problem for real environment under performance constraints. In contrast to
above efforts, our work globally considers the goal of energy conservation from the overall
tasks, the performance and relatively real power consumption data, avoiding the drawbacks of
assumption of constant power consumption, local focus on energy conservation of a single
task. Based on our invocation, we propose an approach for saving energy with performance
constraint that considers power model, performance model and an online decision to allocate
multi-programs, and validate the effectiveness and feasibility of the energy saving framework
through experiments.

3. Program Scheduling Framework
The goal of our work is to rationally schedule a set of programs to execute on each PU so as to
reduce energy dissipation when these programs are running. In HCS environment, there exist
many programs waiting to be processed at any point in time. For achieving the goal, we
propose the task scheduling framework. It includes the proposed program scheduling scheme
for energy saving. The processing flow of framework is shown in Fig. 1.

The main functions of the framework are to profile the performance and power of each
program, get the processing sequence of each PU that have the best energy saving effect under
performance constraint, and then execute them on its corresponding PUs. If framework
determines that current set of program is one, then the framework will use default policy. If
framework determines that energy saving effect is beneficial, it will output the program
sequence and then executes them on corresponding PU. The scheduling framework can be
summarized into three steps.

Step 1. Profiling. Profile all original programs in the waiting pool. We get performance
data of each program from CPU performance model, GPU performance model and energy
data from CPU power model, GPU power model. For the CPU and GPU power model and
performance model have already achieved good effect and GPU performance model is
detailed in [15] and [16], therefore, this paper uses previous studies to get the energy and
performance data without pre-running.

Step 2. Deciding. In the HCS environment, the number of programs to be processed is
often random, when the number of programs is 1, we can allocate the program to the PU which
has better energy saving effect. When the number of programs is greater than 1, we will
allocate all programs to GPU if execution time of all the programs on the GPU is less than the
minimum time of executing a single program on the CPU; otherwise, we will use step 3 to
solve it.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2009

Step 3. Integer programming. In allocating resources for multiple programs, we need to
compromise performance and power consumption to avoid that getting the energy-saving
effect is at the cost of performance. For this reason, performance needs to be used as
constraints for the objective function. In most cases, the ending time of each program assigned
to each PU is different, so this difference should be added as the constraint. We can get
sequence of the corresponding PU by solving the objective function with minimum energy
consumption under the constraint of performance.

Program to be executed

Getting the
time and

power data
of CPU

Getting the
time and

power data
of GPU

GPU Performance
Model

GPU Power Model

CPU Performance
Model

CPU Power Model

Is the number of
programs > 1?

Program to be executed

Program to be executed

N

Y

Step 1 Step 2
Step 3

Is energy saving ? Y

Sum(GPUT1....P)
<Min(CPUT1...P)

Y

N

N

Program sequence
for 1th PU

Program sequence
for mth PU

Integer
programming

Fig. 1. Program scheduling framework

If the energy is viewed as a resource in a HCS, management of energy in the system can be
regarded as the allocation of resources. Similarly, performance can also be considered as a
resource in the system. The allocation of system resources are usually based on the demand of
target. Therefore, in heterogeneous system environment that can run multi-programs, we can
configure different resources to reduce the energy consumption of the system. In the following,
we will model the energy saving problem of HCS, and named this optimization model as
PCGA (Programs-CPU-GPU-Allocation). By judging how many programs are allocated to
CPU and GPU can make the system more energy-efficient under the constraint of performance,
PCGA model realizes the coordination of allocating the system resource when the
heterogeneous system handles multi-programs. PCGA model is based on integer
programming and ultimately formalized into a 0-1 knapsack problem by adding resource
allocation constraints.

3.1 Symbol definition
M represents the number of CPU and GPU in systems;
N represents the number of programs to be processed in the system;
Eij represents the energy consumption of the jth program running on the ith PU (0<=j<=N;
0<=i<=M);
Tij represents the consumed time by the jth program running on the ith PU (0<=j<=N;
0<=i<=M);
We let i represent PU in system; j denote the program to be executed on the system; then
assigning ith processor to complete the jth program has the following expression:

2010 Li et al.: Low-power Scheduling Framework for Heterogeneous
Architecture under Performance Constraint

1,assign th PU to execute th program
0,not assign th PU to execute th programij

 i j
x

i j

=

3.2 Objective function
The goal of the problem we solve is to choose a suitable combination that minimizes the total
energy consumption of the system. Based on the above variable definition, we can obtain the
objective function as shown in (1) that represents the total energy consumption.

1 1

m n

ij ij
i j

f E x
= =

=∑∑

(1)

3.3 Constraints
According to the requirements of the problem, each program has only one processor to run, so
we get the processor constraint as shown in (2).

1
1(1,2,...,)

m

ij
i

x j n
=

= =∑

(2)

When assigning a processor to a program, performance should be taken into consideration.
We can't unlimited reduce performance for saving energy, so we add constraint of
performance to the objective function. Due to the randomness of the execution time of the
program, it is not suitable for most scenes for allocating programs to the CPU and the GPU
respectively in an equal time-consuming manner. In order to better adapt to the real
environment, we allow unequal distribution of time on CPU and GPU. In PCGA model, we
use the parameter to control running time of different PU. To do this, we use the performance
tuning parameter Q to control the time on each processor. In reality, GPU is suitable for
dealing with compute-intensive programs and has good performance, therefore, this paper
focus on using GPU to execute more programs. Considering above factors, we obtain the time
constraint as shown in (3).

1 1 2 2
1 1

2 2 1 1
1 1

* *

* *

n n

j j j j
j j

n n

j j j j
j j

T x T x

Q T x T x

= =

= =

 <=

 <=

∑ ∑

∑ ∑

(3)

Taking (2) and (3) into account, the objective function of the problem can eventually be
formalized as (4).

The value of Q in (4) is got from our previous experiments (demonstrated in Fig. 2) for
minimizing the energy consumption under the performance constraint. In order to obtain the
appropriate value, we got it through experimental comparison. In each group of experiments,
the energy consumption trends obtained by different values of Q are the same as Fig. 2; for this
reason, we only list one of them. As shown in Fig. 2, vertical axis represents the energy
consumption of the proposed scheduling approach. Horizontal axis is the different value of Q.
As shown in the graph, the value of 0.45 can provide best energy saving effect under
performance constraint and the values of 0.45-0.7 can also give comparable effect. For more
programs executing on GPU, we set the Q value as 0.45 in the program scheduling.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2011

1 1

1

1 1 2 2
1 1

2 2 1 1
1 1

min

. . 1(1,2,...,)

 * *

 * *

 0 1

m n

ij ij
i j

m

ij
i
n n

j j j j
j j

n n

j j j j
j j

ij

f E x

s t x j n

T x T x

Q T x T x

x

= =

=

= =

= =

 =

= =

 <=

<=

 =

∑∑

∑

∑ ∑

∑ ∑
或

(4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4.5

4.6

4.7

4.8

4.9

En
er

gy

The value of Q
Fig. 2. Energy saving effect on different Q value

The pseudo code for the proposed scheduling scheme is described in Fig. 3; it uses the
information from the previous power and performance estimation model for CPU and GPU.
By using above time and energy information, the scheduler distributes these programs among
PUs that is suitable for energy saving under the constraint of performance. The input of our
proposed scheme is a set of programs which has P. Once started, the algorithm first obtains the
prediction execution time of P programs using the GetEstimatedTime() function; then gets the
predicted energy consumption of P programs which is obtained by GetEstimatedEnergy ()
function. After getting above information, algorithm will judge whether P is equal to 1 or not;
if yes, this program will be sent to the corresponding queue of PU by judging which the power
consumption of each PU; if no, the program will be sent to GPU when the total time of P
programs running on GPU is smaller than minimum time of one program running in CPU.
When the total time of P programs running on GPU is larger than minimum time of one
program running in CPU, the corresponding sequence is produced by the integer programming.
In algorithm, integer programming is expressed by Zero_One_Knapasck() function which is
implemented using equation 4. The outputs of algorithm are the sequence of programs to be
executed for each PU. In Fig. 3, the parameter Q in line 6 is the same value as the Q in formula
4. In line 13-15, we only consider the performance factor without considering the energy

2012 Li et al.: Low-power Scheduling Framework for Heterogeneous
Architecture under Performance Constraint

consumption factor because we prefer GPU execution when the GPU can get better
performance than that of CPU.

Input: The set of P programs to be executed
Output: Sequence to be executed on each PU (SCPU, SGPU)

Algorithm:
1. GetEstimatedTime(CPUTP,GPUTP);
2. GetEstimatedEnergy(CPUEP);
3. Using [17] to get the software energy on GPU, GPUEP;
4. if P ==1
6. if CPUEP > GPUEP && Q * CPUTP < GPUTP

7. SGPU=P;
8. else
9. SCPU=P;
10. end if
11. return SGPU,SCPU;
12. else
13. if Sum(GPUT1....P) <Min(CPUT1...P)
14. SGPU=1....P;
15. return SGPU;
16. else
17. Zero_One_knapsack (P); //Implementing the equation 4.
18. return SGPU,SCPU;
19. end if
20. end if

Fig. 3. Pseudo code for program scheduling

4. Experimental Evaluation
In this paper, all of experiments are conducted on Intel i5-3230M quad-core processors (8
cores in total) and Nvidia’s GT740M platform which is the Kepler architecture. This version
of graphics card consists of two SMs and 2GB DRAM memory. Each SM contains 192 CUDA
cores. The programming environment of GPU is CUDA6.5. To demonstrate effectiveness of
our algorithm, we select 44 typical benchmarks from CUDA SDK to conduct typical
experiments, such as BlackScholes, fastWalshTransform, matrixMul, sortingNetworks，etc,
which are widely adopted by the existing works.

To better evaluate the scheduling policy, we conduct several simulation cases to get
favorable comparison such as some same program experiments and some different program
experiments for scheduling. The programs we selected are BlackScholes, fastWalshTransform,
matrixMul, scalarProd, transposeCoalesced, transposeNaive, Vecadd and their input data rang
are respectively 12M-18M, 32M-64M, 200K-800K, 64M-256M, 500K-2M, 500K-2M,
22M-64M. For testing our approach, we give each program two versions, one is for one PU
(e.g. CPU) and the other is for another PU (e.g. GPU). In experiments, we select typical
scheduling approach for comparison. These approaches are Only-CPU, Only-GPU,
Alternate-Assignment (AA), Estimated-Execution-Time (EET) and Energy Optimal(Opt).
AA represents using CPU and GPU in round-robin fashion and doesn’t consider performance
and energy consumption status during selection. EET is to select the device which can

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2013

complete the incoming program more quickly by considering the performance information.
Opt is to select the device which can save more energy to run the program by considering the
energy information. In the experiment, since the performance and power consumption of the
AA scheduling scheme are greatly affected by the executing order of program, so this paper
use multiple execution to average the value of time and energy. This phenomenon also appears
in the EET method, but not significant [31], so the power consumption and performance value
of EET are obtained by single measurement method. We also give experiments using only on
CPU and GPU scheme for fair comparison. Among them, the energy consumption of Only
CPU policy includes the energy of the GPU idle state; similarly, the energy consumption of
Only GPU policy includes the energy of the CPU idle state.

Since the execution sequence has some influence on the performance and power
consumption of some scheduling methods, in order to better show the differences in
performance and power consumption of the various scheduling methods, we select two
different sets of experiments to verify. The first group of programs is to avoid the impact of
executing order on the performance and power consumption; we choose a different number of
the same program to eliminate this effect. In this paper, we select the number of 4, 6, and 7 of
the vecadd program to verify the comparison. The second set of programs is designed to better
demonstrate the universality of the proposed methods. For this, we select a number of different
programs for verification. In this experiment, the number of second sets of programs we
selected is the same as the number of programs in the first group; among them, the names of
the four programs are BlackScholes, matrixMul, scalarProd, transposeCoalesced; the names of
the six programs are BlackScholes, matrixMul, scalarProd, transposeCoalesced,
transposeNaive, Vecadd; the names of the seven programs are BlackScholes, matrixMul,
scalarProd, transposeCoalesced, transposeNaive, vectorAdd, fastWalshTransform.

Figs. 4 through 7 respectively show the energy consumption and execution time for same
program group, energy consumption and execution time for different program group. In these
figures, label (a) represents the 4 programs in the experiment; label (b) indicates the 6
programs in the experiment and label (c) denotes the 7 programs in the experiments. As shown
in the Fig. 4 and 6, Only CPU scheduling consumes more energy than that of Only GPU
Scheduling because GPU provides more powerful computation ability. This phenomenon is
also happened in the Fig. 5 and 7 on performances due to GPU has powerful throughput.
Although Only GPU policy perform better than Only CPU policy in performance and energy
saving, it is not always true for other scheduling scheme.

AA scheduling scheme assigns the programs alternately to the CPU and GPU and its
performance and energy largely depends on sequence of incoming programs. Therefore, AA
doesn’t consider the property of program and this result its worse performance and less energy
saving effect compared with Only GPU scheme. Due to it alternately uses the CPU and GPU,
its performance is better than Only CPU policy and also has better energy saving than Only
CPU in the experiments. Contrary to AA scheduling scheme, EET, Opt and our proposed
scheme consider the time and performance information of program and can rational assign the
program to each device depending on its purpose.

In the experiment of executing same program, Fig. 4 shows the energy consumption of
each scheduling policy and Fig. 5 shows performance of these schemes. In Fig. 4, we can see
that the energy consumption of EET and the Opt scheme are equal to that of Only GPU
scheduling under the 4 programs, 6 programs and 7 programs experiment. This is because
GPU consumes less energy and higher performance than CPU in executing vecadd program.
For EET policy seeks the minimum time in executing 4, 6 and 7 programs, and this purpose
will choose all programs to be executed on GPU, therefore the energy consumption of EET

2014 Li et al.: Low-power Scheduling Framework for Heterogeneous
Architecture under Performance Constraint

policy is equal to that of Only GPU scheme. For Opt policy pursuits the minimum energy
consumption in executing 4, 6 and 7 programs, and this goal will select all programs to be
executed on GPU, therefore the energy consumption of Opt policy is equal to that of Only
GPU scheme. For our proposed approach, its energy consumption is higher than that of Only
GPU, EET and Opt method in Fig. 4. This is because our proposed approach has the time
constraint and it seeks the minimum energy consumption under this time constraint. The EET,
Opt and Only GPU scheduling scheme respectively saves 10.44%, 11.31%, 9.25% energy
compared with that of our approach in 4 programs experiment, 6 programs experiment and 7
programs experiment. Due to the EET and Opt policy assign all programs to GPU, the time of
these scheme is also equal to that of Only GPU policy shown in Fig. 5. Our approach improves
the performance by 17.6%, 16.64%, 16.11% compared with EET, Opt and Only GPU
scheduling scheme in 4 programs experiment, 6 programs experiment, and 7 programs
experiment, respectively. This shows that our approach consumes more energy to get better
performance improvement compared with EET, Opt and Only GPU scheme. The experimental
result shows that it is worth doing this.

Only CPU
Only GPU

Proposed AA EET
Optimal

0.0

0.5

1.0

1.5

2.0

2.5

Only CPU
Only GPU

Proposed AA EET
Optimal

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

En
er

gy
 (J

)

Only CPU
Only GPU

Proposed AA EET
Optimal

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(a)

(b)

(c)

Fig. 4. Energy consumption of each scheme for same tasks

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2015

Only CPU
Only GPU

Proposed AA EET
Optimal

0
30
60
90

120
150
180

Ti

m
e(

M
S)

(a)

Only CPU
Only GPU

Proposed AA EET
Optimal

0
40
80

120
160
200
240
280

(b)

Only CPU
Only GPU

Proposed AA EET
Optimal

0
50

100
150
200
250
300
350

(c)

Fig. 5. Performance of each scheme for same tasks

In reality, only executing the same programs is seldom. Therefore, to approach the real
environment, we also conduct three experiments which include 4 different programs, 6
different programs and 7 different programs for comparison. In Fig. 6(a), we can see our
proposed approach consumes more energy than that of Opt policy by 4.47%, and saves
33.15%, 27.09% than that of Only GPU scheme and EET scheme. In Fig. 7(a), our proposed
approach improves the performance by 29.09% and 32.87% compared with that of the Only
GPU scheme and Opt policy, and consumes more time than that of EET scheme by 24.29%. In
Fig. 6(b), our proposed approach consumes more energy than that of Opt policy by 31.79%
and saves 11.75%, 22.45% energy than that of and EET scheme and Only GPU scheme. In Fig.
7(b), our proposed approach improves the performance by 45.93% and 40.87% compared with
that of the Only GPU scheme and Opt policy, and consumes more time than that of EET
scheme by 7.31%. In Fig. 6(c), our proposed approach consumes more energy than that of Opt
policy by 10.04% and saves more energy than that of Only GPU scheme and EET scheme by
20.55% and 6.08%.In Fig. 7(c), our proposed approach improve the performance by 45.12%,
37.96% and 7.58% compared with that of the Only GPU scheme, Opt policy and EET scheme.
This is because different scheme has different purpose and then result in different sequence.

2016 Li et al.: Low-power Scheduling Framework for Heterogeneous
Architecture under Performance Constraint

The target of EET scheme is to achieve the minimum execution time of the scheduling
programs; therefore it schedules the program to execute on corresponding PU which has the
minimum execution time. The goal of Opt policy is to get the minimum energy consumption
during execution of scheduling programs. It schedules the programs based on the energy
information to get minimum energy consumption. Our proposed approach considers the
energy and the performance systematically and then can balance each metric. On average, our
algorithm saves 14.97% energy compared with that of the EET policy and yields 37.23%
performance improvement than that of Opt scheme. From above comparison, we can see that
our scheme spend more energy to get more performance improvement and can achieve the
balance of the two approaches. Experiment also shows that it is worth doing this.

Only CPU
Only GPU

Proposed AA EET
Optimal

0
2
4
6
8

10
12
14
16
18
20

Only CPU
Only GPU

Proposed AA EET
Optimal

0

5
10

15
20

25

En
er

gy
(J

)

Only CPU
Only GPU

Proposed AA EET
Optimal

0
10
20
30
40
50
60

(a)

(b)

(c)

Fig. 6. Energy consumption of each scheme for different programs

Fig. 8 represents execution time ratio of CPU/GPU for PCGA and EET scheme; and Fig.
9 demonstrates energy consumption ratio of CPU/GPU for PCGA and Opt scheme. The
horizontal axis indicates the experimental cases using different scheme. For example,
7Diff_PCGA means that the experiment has 7 different programs using the PCGA scheme,
7Same_EET is the experiment has 7 same programs using EET policy and 6Same_Opt is the
experiment has 6 same programs using Opt scheme. The vertical axis denotes the execution

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2017

time ratio for Fig. 8 and energy consumption ratio for Fig. 9. The lower portion of the bar
shows the execution time ratio / energy consumption ratio of CPU; and the upper portion of the
bar denotes the execution time ratio / energy consumption ratio of GPU. As shown in the Fig.
8, the difference of time ratio between PCGA and EET is small for executing different
programs, but the difference is obvious in executing the same program. This implies that the
EET has the unbalanced work distribution between each PU. This phenomenon also appears in
the Fig. 9 on the energy consumption for Opt policy. These can also verify our approach has
some advantage for EET and Opt scheduling.

Only CPU
Only GPU

Proposed AA EET
Optimal

0
300
600
900

1200
1500
1800

Ti

m
e(

M
S)

(a)

Only CPU
Only GPU

Proposed AA EET
Optimal

0

500

1000

1500

2000

(b)

Only CPU
Only GPU

Proposed AA EET
Optimal

0

1000

2000

3000

4000

5000

(c)

Fig. 7. Performance of each scheme for different programs

2018 Li et al.: Low-power Scheduling Framework for Heterogeneous
Architecture under Performance Constraint

7Diff_PCGA
7Diff_EET

6Diff_PCGA
6Diff_EET

4Diff_PCGA
4Diff_EET

7Same_PCGA

7Same_EET

6Same_PCGA

6Same_EET

4Same_PCGA

4Same_EET
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ex
ec

ut
io

n
Ti

m
e R

ati
o(

%
)

 GPU
 CPU

Fig. 8. Execution time ratio of CPU/GPU for the PCGA and EET scheme

7Diff_PCGA
7Diff_Opt

6Diff_PCGA
6Diff_Opt

4Diff_PCGA
4Diff_Opt

7Same_PCGA

7Same_Opt

6Same_PCGA

6Same_Opt

4Same_PCGA

4Same_Opt
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

En
er

gy
 C

on
su

m
pt

io
n

Ra
tio

(%
)

 GPU
 CPU

Fig. 9. Ratio of CPU/GPU energy consumption for the PCGA and Optiaml scheme

5. Conclusion
Energy saving will continue to be a key design goal for the heterogeneous computing

system. In this paper, we focus the problem of saving the energy for heterogeneous with CPU
and GPU by allocating the appropriate programs between them. In cope with the problem, we
propose a framework to achieve this goal by considering the power, performance and the
program scheduling. After getting power data, we formalize the energy saving problem as a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2019

0-1 knapsack problem by considering the performance constraints. We present an
experimental evaluation of our scheduling policy on typical platform by executing diverse set
of benchmarks. The experimental results demonstrate that our approach is effective and
soundness. On average, our proposed algorithm saves 14.97% energy compared with that of
the time-oriented policy and yields 37.23% performance improvement than that of
energy-oriented scheme.

References
[1] Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal,

and Pradeep Dubey, “Debunking the 100X GPU vs. CPU myth: An evaluation of throughput
computing on CPU and GPU,” ACM SIGARCH Computer Architecture News, 38(3), 2010.
Article (CrossRef Link)

[2] ChrisGregg and Kim Hazelwood, “Where is the data?Why you cannot debate CPU vs.GPU
performance without the answer,” in Proc. of the 2011 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’11), 134–144, 2011.
Article (CrossRef Link)

[3] Sparsh Mittal and Jeffrey S. Vetter, “A survey of methods for analyzing and improving GPU
energyefficiency,” ACM Computing Surveys, 47(2), 2014. Article (CrossRef Link)

[4] Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho Navarro, and Wen-mei W. Hwu,
“An asymmetric distributed shared memory model for heterogeneous parallel systems,” ACM
SIGARCH Computer Architecture News, 38(1), 347–358, March 2010. Article (CrossRef Link)

[5] Qi Hu, Nail A. Gumerov, and Ramani Duraiswami, “Scalable fast multipole methods on
distributed heterogeneous architectures,” in Proc. of the 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, New York, NY, Article 36, pp.
1-12, 2011. Article (CrossRef Link)

[6] TOP500 List - November 2016, https://www.top500.org/list/2016/11/
[7] NOVEMBER 2016, https://www.top500.org/green500/lists/2016/11/
[8] Augonnet, Cédric, et al, “StarPU: a unified platform for task scheduling on heterogeneous

multicore architectures,” Concurrency and Computation: Practice and Experience, 23(2),
187-198, 2011. Article (CrossRef Link)

[9] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim, “Qilin: Exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” in Proc. of the 42nd International
Symposium on Microarchitecture (MICRO). ACM, New York, NY, 45–55, 2009.
Article (CrossRef Link)

[10] Belviranli, Mehmet E., Laxmi N. Bhuyan, and Rajiv Gupta, “A dynamic self-scheduling scheme
for heterogeneous multiprocessor architectures,” ACM Transactions on Architecture and Code
Optimization (TACO), 9(4), 57, 2013. Article (CrossRef Link)

[11] Grewe, Dominik, and Michael FP O’Boyle, “A static task partitioning approach for heterogeneous
systems using OpenCL,” in Proc. of International Conference on Compiler Construction.
Springer Berlin Heidelberg, pp. 286-305, 2011. Article (CrossRef Link)

[12] Murilo Boratto, Pedro Alonso, Carla Ramiro, andMarcos Barreto, “Heterogeneous computational
model for landform attributes representation on multicore and multi-GPU systems,” Procedia
Computer Science, 9, 47-56, 2012. Article (CrossRef Link)

[13] Bernabé, Gregorio, Javier Cuenca, and Domingo Giménez, “Optimization techniques for
3D-FWT on systems with manycore GPUs and multicore CPUs,” Procedia Computer Science, 18,
319-328, 2013. Article (CrossRef Link)

[14] Jiménez, Víctor J., et al, “Predictive runtime code scheduling for heterogeneous architectures,”
International Conference on High-Performance Embedded Architectures and Compilers.
Springer Berlin Heidelberg, pp. 19-33, 2009. Article (CrossRef Link)

http://doi.org/10.1145/1816038.1816021
http://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.1145/2636342
https://doi.org/10.1145/1735970.1736059
https://doi.org/10.1145/2063384.2063432
https://www.top500.org/list/2016/11/
https://www.top500.org/green500/lists/2016/11/
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1145/1669112.1669121
https://doi.org/10.1145/2400682.2400716
https://doi.org/10.1007/978-3-642-19861-8_16
https://doi.org/10.1016/j.procs.2012.04.006
https://doi.org/10.1016/j.procs.2013.05.195
https://doi.org/10.1007/978-3-540-92990-1_4

2020 Li et al.: Low-power Scheduling Framework for Heterogeneous
Architecture under Performance Constraint

[15] Hong, Sunpyo, and Hyesoon Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness,” ACM SIGARCH Computer Architecture
News, Vol. 37. No. 3, 2009. Article (CrossRef Link)

[16] Wang, Haifeng, and Yunpeng Cao, “Predicting power consumption of GPUs with fuzzy wavelet
neural networks,” Parallel Computing, 44, 18-36, 2015. Article (CrossRef Link)

[17] Junke Li, Bing Guo, et al, “A Modeling Approach for Energy Saving Based on GA-BP Neural
Network,” Journal of Electrical Engineering and Technology, 11(5), 1289-1298, 2016.
Article (CrossRef Link)

[18] Paul, Indrani, et al, “Coordinated energy management in heterogeneous processors,” Scientific
Programming, 22(2), 93-108, 2014. Article (CrossRef Link)

[19] Guohui Wang, Yong Guan, Yi Wang, and Zili Shao, “Energy-Aware Assignment and Scheduling
for Hybrid Main Memory in Embedded Systems,” Computing (Springer), Vol. 98, No. 3, pp.
279-301, 2016. Article (CrossRef Link)

[20] Yi Wang, Hui Liu, Duo Liu, Zhiwei Qin, Zili Shao, and Edwin H.-M. Sha, “Overhead-Aware
Energy Optimization for Real-Time Streaming Applications on Multiprocessor System-on-Chip,”
ACM Transactions on Design Automation of Electronic Systems (TODAES), Vol. 16, No 2, pp.
14:1-14:32, March 2011. Article (CrossRef Link)

[21] Wenjie Liu, et al, “A waterfall model to achieve energy efficient tasks mapping for large scale
GPU clusters,” in Proc. of Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on. IEEE, 2011. Article (CrossRef Link)

[22] Khemka, Bhavesh, et al, “Utility functions and resource management in an oversubscribed
heterogeneous computing environment,” IEEE Transactions on Computers, 64(8), 2394-2407,
2015. Article (CrossRef Link)

[23] Machovec, Dylan, et al, “Dynamic resource management for parallel tasks in an oversubscribed
energy-constrained heterogeneous environment,” in Proc. of Parallel and Distributed Processing
Symposium Workshops, 2016 IEEE International. IEEE, 2016. Article (CrossRef Link)

[24] Oxley, Mark A., et al, “Makespan and energy robust stochastic static resource allocation of a
Bag-of-tasks to a heterogeneous computing system,” IEEE Transactions on Parallel and
Distributed Systems, 26(10), 2791-2805, 2015. Article (CrossRef Link)

[25] Qiang Liu, and Wayne Luk, “Heterogeneous systems for energy efficient scientific computing,” in
Proc. of International Symposium on Applied Reconfigurable Computing. Springer Berlin
Heidelberg, 2012. Article (CrossRef Link)

[26] Kai Ma, et al, “Greengpu: A holistic approach to energy efficiency in gpu-cpu heterogeneous
architectures,” in Proc. of 2012 41st International Conference on Parallel Processing. IEEE, 2012.
Article (CrossRef Link)

[27] R. Kaleem, R. Barik, T. Shpeisman, B. Lewis, C. Hu, and K. Pingali, “Adaptive Heterogeneous
Scheduling on Integrated GPUs,” in Proc. of the 23rd International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp.151-162, 2014. Article (CrossRef Link)

[28] Barik, Rajkishore, et al, “A black-box approach to energy-aware scheduling on integrated
CPU-GPU systems,” in Proc. of the 2016 International Symposium on Code Generation and
Optimization. ACM, pp. 70-81, 2016. Article (CrossRef Link)

[29] Kai Ma, et al, “Energy conservation for GPU–CPU architectures with dynamic workload division
and frequency scaling,” Sustainable Computing: Informatics and Systems, 12, 21-33, 2016.
Article (CrossRef Link)

[30] Totoni, Ehsan, Mert Dikmen, and María Jesús Garzarán, “Easy, fast, and energy-efficient object
detection on heterogeneous on-chip architectures,” ACM Transactions on Architecture and Code
Optimization (TACO), 10(4), 45, 2013. Article (CrossRef Link)

[31] Chandramohan, Kiran, and Michael FP O'Boyle, “Partitioning data-parallel programs for
heterogeneous MPSoCs: time and energy design space exploration,” ACM SIGPLAN Notices, Vol.
49. No. 5, 2014. Article (CrossRef Link)

[32] Guibin Wang, and Xiaoguang Ren, “Power-efficient work distribution method for CPU-GPU
heterogeneous system,” in Proc. of International Symposium on Parallel and Distributed
Processing with Applications. IEEE, 2010. Article (CrossRef Link)

https://doi.org/10.1145/1555815.1555775
https://doi.org/10.1016/j.parco.2015.02.002
https://doi.org/10.5370/JEET.2016.11.5.1289
https://doi.org/10.1155/2014/210762
https://doi.org/10.1007/s00607-015-0464-7
https://doi.org/10.1145/1929943.1929946
https://doi.org/10.1109/IPDPS.2011.129
https://doi.org/10.1109/TC.2014.2360513
https://doi.org/10.1109/IPDPSW.2016.25
https://doi.org/10.1109/TPDS.2014.2362921
https://doi.org/10.1007/978-3-642-28365-9_6
https://doi.org/10.1109/ICPP.2012.31
https://doi.org/10.1145/2628071.2628088
https://doi.org/10.1145/2854038.2854052
https://doi.org/10.1016/j.suscom.2016.05.002
https://doi.org/10.1145/2541228.2555302
https://doi.org/10.1145/2666357.2597822
https://doi.org/10.1109/ISPA.2010.22

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 5, May 2020 2021

[33] Choi, Hong Jun, et al, “An efficient scheduling scheme using estimated execution time for
heterogeneous computing systems,” The Journal of Supercomputing, 65(2), 886-902, 2013.
Article (CrossRef Link)

[34] Hamano, Tomoaki, Toshio Endo, and Satoshi Matsuoka, “Power-aware dynamic task scheduling
for heterogeneous accelerated clusters,” Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on. IEEE, 2009. Article (CrossRef Link)

[35] Mark Silberstein and Naoya Maruyama, “An exact algorithm for energy-efficient acceleration of
task trees on CPU/GPU architectures,” in Proc. of the 4th Annual International Conference on
Systems and Storage (SYSTOR’11). ACM, New York, NY, Article 7, pp. 1-7, 2011.
Article (CrossRef Link)

[36] Jang, Jae Young, et al, “Workload-aware optimal power allocation on single-chip heterogeneous
processors,” IEEE Transactions on Parallel and Distributed Systems, 27(6), 1838-1851, 2016.
Article (CrossRef Link)

Junke Li: He received his BS degree in Computer Science from the Henan Polytechnic
University in 2010, and he received his MS degree in Computer Science from Southwest
University in 2013, he received his PHD degree in Computer Science from Sichuan
University. He is currently an associate professor in the School of Computer and Information
at Qiannan Normal University for Nationalities, China.

Bing Guo: He received his BS degree in Computer Science from the Beijing Institute of
Technology in China, and MS and PhD degrees in Computer Science from the University of
Electronic Science and Technology of China, China, in 1991, 1999, and 2002, respectively.
He is currently a professor in the School of Computer Science at the Sichuan University,
China. His current research interests include embedded real-time system and green
computing.

Yan Shen: She received her MS degree in Mechatronics Engineering and PhD degree in
Measuring and Testing Technology and Instruments from University of Electronic Science
and Technology of China in 2001 and 2004 respectively. Currently she is a professor in the
Control Engineering College, Chengdu University of Information and Technology. Her main
research interests include distributed measurement systems, embedded system development,
wireless sensor networks, robotics.

Deguang Li: He received his BS degree in Computer Science from the PLA Information
Engineering University, in 2010, and he received his MS degree in Computer Science from
Northeastern University, in 2012. He is currently a PhD candidate in the School of Computer
Science, Sichuan University. His research interest includes green computing.

https://doi.org/10.1007/s11227-013-0870-6
https://doi.org/10.1109/IPDPS.2009.5160977
https://doi.org/10.1145/1987816.1987826
https://doi.org/10.1109/TPDS.2015.2453965

