• Title/Summary/Keyword: 타원형 파랑모형

Search Result 21, Processing Time 0.028 seconds

Elliptic Numerical Wave Model Using Generalized Conjugate Gradient Method (GCGM을 이용한 타원형 수치 파랑모형)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.93-99
    • /
    • 1998
  • Parabolic approximation and sponge layer are applied as open boundary condition for elliptic finite difference wave model. Generalized conjugate gradient method is used as a solution procedure. Using parabolic approximation a large part of spurious reflection is removed at the spherical shoal experiment and sponge layer boundary condition needs more than 2 wave lengths of sponge layer to give similar results. Simulating the propagation of waves on a rectangular harbor, it is identified that iterative scheme can be applied easily for the non-rectangular computational region.

  • PDF

Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.565-573
    • /
    • 2007
  • The effect of wave and current interactions on irregular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by a combination of REF/DIF S(a wave model) and SHORECIRC(a current model) and a time dependent phase-resolving wavecurrent model, FUNWAVE. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the combined model system agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. In addition, the results of FUNWAVE show a good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

Numerical Simulation of Regular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴를 통과하는 규칙파의 파랑쇄파류에 의한 변형)

  • Choi, Jun-Woo;Yoon, Sung-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.570-576
    • /
    • 2007
  • 수중천퇴가 있는 지형을 통과하며 변형하는 파랑을 실험한 Vincent와 Briggs (1989)의 실험조건을 수치모의하여 파랑과 흐름의 상호작용 효과를 연구하였다. SHORECIRC 흐름모형을 결합한 파랑모형 REF/DIF 1과 SWAN, 그리고 파랑과 흐름을 동시에 수치모의 할 수 있는 FUNWAVE를 이용하여 수중천퇴상을 통과하며 변형하고 또 다시 수중천퇴상에서 발생한 쇄파에 의해 발생된 쇄파류에 의해 변형하는 규칙파를 수치모의하였다. 수중천퇴상에서 쇄파가 발생할 때 잉여파응력의 급격한 변화에 따른 강한 유사제트류가 발생하고, 이 흐름은 수중천퇴후면의 파집중현상을 방해하여 파랑을 천퇴중심축으로부터 바깥쪽으로 굴절시켜, 파고를 상대적으로 감소시키는 역할을 한다. 이러한 역학은 실험결과와 본 연구의 수치모의를 통해 확인할 수 있었고, 이는 파랑쇄파류의 파랑변형에 미치는 역할의 중요성을 확인시켜주는 것이다. 규칙파 모의에 한계가 있는 SWAN과 규칙파 특성상 강하게 나타나는 중복파의 잉여파응력계산에 한계가 있는 REF/DIF 1과 달리 FUNWAVE를 이용한 수치모의는 실험결과와 완벽히 일치하였으며, 수중천퇴 후면에 발생하는 쇄파류와 쇄파류에 의한 쌍 vortex의 발달과정을 잘 보여 주었다.

  • PDF

Numerical Simulation of Regular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴를 통과하는 규칙파의 파랑쇄파류에 의한 변형)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.557-564
    • /
    • 2007
  • The effect of wave and current interactions on regular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by constituting two numerical model systems: a combination of SWAN(a wave model) plus SHORECIRC(a current model) and a combination of REF/DIF 1(a wave model) plus SHORECIRC. A time dependent phase-resolving wave-current model, FUNWAVE, is also utilized to simulate the experiment. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the two model systems agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. However, it is found that the radiation stresses for standing waves are misevaluated in the wave models. In addition, the results of FUNWAVE show very good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

Wave Transformation Due to Energy Dissipation Region (에너지 감쇠영역으로 인한 파랑변형)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.135-140
    • /
    • 1999
  • To simulate the wave transformation by an energy dissipation region, a numerical model is suggested by discretizing the elliptic mild-slope equation. Generalized conjugate gradient method is used as solution algorithm to apply parabolic approximation to open boundary condition. To demonstrate the applicabil-ity of the numerical procedure suggested, the wave scattering by a circular damping region is examined. The feature of reflection in front of the damping region is captured clearly by the numerical solution. The effect of the size of dissipation coefficient is examined for a rectangular damping region. The recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF

A Numerical Model of PCGM for Mild Slope Equation (완경사 파랑식에 대한 PCGM 수치모형)

  • 서승남;연영진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.164-173
    • /
    • 1994
  • A numerical model to solve mild slope equation is developed by use of a preconditioned conjugate gradient method (PCGM). In the present paper. accurate boundary conditions and a better preconditioner are employed which are improved from the existing method of Panchang et al. (1991). Computational procedures are focused on weakly nonlinear waves, and emerged problems to make a more accurate model are discussed. The results of model are tested against laboratory results of both circular and elliptic shoals. Model results of wave amplitude show excellent agreement with laboratory data and thes thus model can be used as a powerful tool to calculate wave transformation in shallow waters with complex bathymetry.

  • PDF

A Parabolic Model to the Modified Mild Slope Equation (수정 완경사 파랑식에 대한 포물형 근사식 모형)

  • Seo, Seung-Nam;Lee, Jong-Chan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.360-371
    • /
    • 2006
  • In order to calculate waves propagating into the shallow water region, a generalized parabolic approximate model is presented. The model is derived from the modified mild slope equation and includes all the existing parabolic models presented in the paper. Numerical results are presented in comparison to laboratory data of Berkhoff et al.(1982). The existing parabolic model shows almost same accuracy against the modified parabolic model and both results of models stand in closer agreement to the laboratory data. Therefore the existing parabolic model based on mild slope equation is a useful tool to compute shallow water waves which turns out to be more fast and stable in computational aspect.

Irregular Wave Model for Youngil Bay (영일만의 불규칙파 모형)

  • 정신택;채장원;이동영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.146-150
    • /
    • 1996
  • The waves are most important dynamical factors for the analyses of structural stability and topographical changes on coastal engineering field. However, wind-generated waves are very irregular in shape and transformed through refraction, diffraction and shoaling when they propagate into shallow water where bottom topography and water depth vary significantly. Recently, Vincent and Briggs (1989) reported hydraulic model experiments for the transformation of monochromatic and directionally-spread irregular waves passing over a submerged elliptical mound. They concluded that for the case of combined refraction-diffraction of waves by a shoal, the propagation characteristics of the irregular and equivalent regular wave conditions can be vastly different. On the irregular wave transformation have been made theoretical and numerical studies for several years. Although theoretical and laboratory studies on wave transformation have progressed considerably, field measurement and comparison of numerical results with related theories are still necessary for the prediction of the phenomena in reality. In this study, field measurement of both incident and transformed waves in Youngil Bay were made using various kinds of equipments, and numerical computations were made on the transformed frequency spectra of large waves propagating over the shoal using Chae and Jeong's (1992) elliptic model. It is shown that this model results agree very well with field data, and thus the applicability of the model is now validated.

  • PDF

EVP Models for Wave Transformation in Regions of Slowly Varying Depth (EVP방법(方法)을 이용한 완경사(緩傾斜) 영역(領域)에서의 파랑변형(波浪變形) 수치모형(數値模型))

  • Oh, Seong Taek;Lee, Kil Seong;Lee, Chul Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.231-238
    • /
    • 1992
  • Error vector propagation method is applied to the elliptic mild slope equation in order to reduce the computation time. Results from the elliptic, parabolic, and hyperbolic models are compared with experimental data for an elliptic shoal. Also, results of the elliptic and hyperbolic models are compared with experimental data for a detached breakwater. As a result of applying this model. it is concluded that the present model satisfactorily reduces the computation time compared with other numerical models. In the accuracy of solutions, there are some oscillations but the trend compares well with other models.

  • PDF

타원형 완경사 모형에서의 고차원 무반사 경계조건에 관한 연구

  • ;M. B. Abbott;M. W. Dingemans
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.72-76
    • /
    • 1992
  • 평면파 수치모형 해석시 가상경계에 평행한 입사각을 갖거나, 다방향의 입사파가 가상경계로 동시에 입사되는 경우에는 무처리 시 수치 반사가 발생되므로 해에 악영향을 미친다. 따라서 이러한 경우에 대해 가상경계에서 파랑 Energy 투명하게 통과시키는 고차원 무반사 경계조건에 대해 연구하였다. 이들 조건식의 수학적 안정성을 분석하기 위해 phperbolic system에서 normal-mode 분석을 수행하였다. 1차 및 2차의 고차원 무반사 경계조건을 Galerkin 가중잔차법을 이용 유한요소 모형에 적용하였으며 이들에 대한 특성을 시험하기 위해 수치실험을 실시하였다.

  • PDF