• Title/Summary/Keyword: 증명 지도

Search Result 2,420, Processing Time 0.026 seconds

A Survey on Mathematics Teachers' Cognition of Proof (수학 교사들의 증명에 대한 인식)

  • Park, Eun-Joe;Pang, Jeong-Suk
    • Journal of the Korean School Mathematics Society
    • /
    • v.8 no.1
    • /
    • pp.101-116
    • /
    • 2005
  • The purpose of this study is to survey mathematics teacher's cognition of proof along with their proof forms of expression and proof ability, and to explore the relationship between their proof scheme and teaching practice. This study shows that mathematics teachers tend to regard proof as a deduction from assumption to conclusion and that they prefer formal proof with mathematical symbols. Mathematics teachers also recognize that prof is an important area in school mathematics but they reveal poor understanding of teaching methods of proof. Teachers tend to depend on the proof style employed in mathematics textbooks. This study demonstrates that a proof scheme is a major factor of determining the teaching method of proof.

  • PDF

학교수학에서의 정당화 지도의 필요성 및 가능성에 관한 연구

  • 신현용
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.585-599
    • /
    • 2004
  • 본 연구에서는 학교수학에서 증명지도의 문제점을 정당화의 측면에서 분석하고, 정당화의 한 방법으로서 확률론적 정당화를 제시하며, 학교수학에서 정당화 지도의 교육적 가치, 정당화 지도의 방향, 정당화 지도의 예와 지도 방법에 대해 논의한다. 이러한 논의에 근거하여 학교수학에서의 정당화 지도의 필요성 및 가능성에 관하여 살펴본다. 본 연구에서 '증명'은 고전적인 의미에서의 증명, 즉 엄밀한(rigorous) 증명, 수학적(mathematical) 증명이고, '정당화'는 기존의 수학적 증명 개념은 물론, 다양한 논증 기법을 포함하는 넓은 의미이다.

Mathematics Teachers' Conceptions of Proof and Proof-Instruction (수학 교사의 증명과 증명 지도에 대한 인식 - 대학원에 재학 중인 교사를 중심으로 -)

  • Na, Gwisoo
    • Communications of Mathematical Education
    • /
    • v.28 no.4
    • /
    • pp.513-528
    • /
    • 2014
  • This study is intended to examine 36 in-service secondary school mathematics teachers' conceptions of proof in the context of mathematics and mathematics education. The results suggest that almost teachers recognize the role as justification well but have the insufficient conceptions about another various roles of proof in mathematics. The results further suggest that many of teachers have vague concept-images in relation with the requirement of proof and recognize the insufficiency about the actual teaching of proof. Based on the results, implications for revision of mathematics curriculum and mathematics teacher education are discussed.

A Study on the Historic-Genetic Principle of Mathematics Education(1) - A Historic-Genetic Approach to Teaching the Meaning of Proof (역사발생적 수학교육 원리에 대한 연구(1) - 증명의 의미 지도의 역사발생적 전개)

  • 우정호;박미애;권석일
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.401-420
    • /
    • 2003
  • We have many problems in the teaching and learning of proof, especially in the demonstrative geometry of middle school mathematics introducing the proof for the first time. Above all, it is the serious problem that many students do not understand the meaning of proof. In this paper we intend to show that teaching the meaning of proof in terms of historic-genetic approach will be a method to improve the way of teaching proof. We investigate the development of proof which goes through three stages such as experimental, intuitional, and scientific stage as well as the development of geometry up to the completion of Euclid's Elements as Bran-ford set out, and analyze the teaching process for the purpose of looking for the way of improving the way of teaching proof through the historic-genetic approach. We conducted lessons about the angle-sum property of triangle in accordance with these three stages to the students of seventh grade. We show that the students will understand the meaning of proof meaningfully and properly through the historic-genetic approach.

  • PDF

A study on the teaching of proofs based on Freudenthal's guided reinvention principle (Freudenthal의 안내된 재발명 원리를 적용한 증명 지도 방안에 대한 연구)

  • Han, Hye-Sook;Moon, Su-Jin
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.85-108
    • /
    • 2009
  • The purposes of the study were to develop instructional materials based on Freudenthal's guided reinvention principle for teaching proofs and to investigate how the teaching method based on guided reinvention principle affects on 8th grade students' ability to write proofs and learning attitude toward proofs. Teaching based on guided reinvention principle placed emphasis on providing students opportunities to make a mathematical statement and prove the statement by themselves throughout various activities such as exploring, conjecturing, and testing the conjectures. The study found that students who studied proving with instructional materials developed by guided reinvention principle showed statistically higher mean scores on the posttest than students who studied by a traditional teaching method depending onteacher's explanation. Especially, on the posttest item which requested to prove a whole statement without presenting a picture corresponding to the statement, a big difference among students' responses was found. Many more students in the traditional group did not provide any response on the item. According to the results of the questionnaire regarding students' learning attitudes, the group who studied proving by guided reinvention principle indicated relatively more positive attitudes toward learning proofs than the counterparts.

  • PDF

점진적 구성의 증명지도를 위한 학습 프로그램 개발 연구

  • Park, Ju-Hui
    • Communications of Mathematical Education
    • /
    • v.12
    • /
    • pp.185-200
    • /
    • 2001
  • 증명은 수학에서 기초적이고도 중요한 주제이다. 추측을 만들어내고 자신에게는 물론 타인에게까지 그 추측을 정리로서 확신시키는 활동은 수학활동에서의 핵심이라고 할 수 있다. 그러나 현재의 증명 학습지도에서는 학생들의 수준보다는 높은 증명 발달단계를 제시하고 있다는 보고와 함께 기존의 지도방법의 개선책을 요구하고 있다. 따라서 본고에서는 몇 가지 증명의 발달 단계를 정리해 보고 Balacheff의 증명 4단계를 토대로 하여 증명활동을 점진적인 구성으로 제시한다.

  • PDF

A Study on Teaching Mathematical Proofs of the Middle School Students Using the 'Poof Assisted Cards' (증명보조카드를 활용한 중학생의 증명지도에 관한 연구)

  • Cho, Cheong-Soo;Lee, Jeong-Ja
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.4
    • /
    • pp.521-538
    • /
    • 2006
  • The purpose of this study is to examine the effect of teaching mathematical proofs that made use of the 'proof assisted cards' at the second year of middle school and to investigate students' ability to geometric proofs as well as changes of mathematical attitudes toward geometric proofs. The subjects are seven students at the 2nd year of D Middle School in Daegu who made use of the 'proof assisted cards' during five class periods. The researcher interviewed the students to investigate learning questions made by students as well as the 'proof assisted cards' before and after use. The findings are as follows: first, the students made change of geometric proof ability by proof activity with the 'proof assisted cards' and second, the students made significant change of mathematical attitudes toward geometric proofs by proof activity using the cards.

  • PDF

확률론적 논증을 통한 정당화 지도에 관한 연구

  • Lee, Gyeong-Hui
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.189-194
    • /
    • 2003
  • 급격하게 변하고 있는 이 사회에 맞춰 수학이 변하고 있다. 이에 따라 학교 수학에서의 증명지도가 변해야할 필요성이 있다. 본 연구에서는 기존의 증명 개념을 아우르는 보다 포괄적인 개념으로써 정당화를 소개하고 정당화 지도 방안을 제안한다. 또, 기존의 형식적이고 엄밀한 연역적 증명과 정당화가 어떻게 다른지 비교해 보고 실제 수업하는데 도움을 줄 수 있도록 활용 방안을 간단하게 제시하고자 한다.

  • PDF

Cabri II 를 이용한 증명 교수학습 방법에 관한 연구

  • Ryu, Hui-Chan;Jo, Wan-Yeong
    • Communications of Mathematical Education
    • /
    • v.8
    • /
    • pp.17-32
    • /
    • 1999
  • 본 논문의 목적은 Cabri II 를 이용하여 형식적이고 연역적인 증명수업 방법의 대안을 찾는 데 있다. 형식적인 증명을 하기 전에 탐구와 추측을 통한 발견과 그 결과에 대한 비형식적인 증명 활동을 강조한다. 역동적인 기하소프트웨어인 Cabri II 는 작도가 편리하고 다양한 예를 제공하여 추측과 탐구 그리고 그 결과의 확인을 위한 풍부한 환경을 제공할 수 있으며, 끌기 기능을 이용한 삼각형의 변화과정에서 관찰할 수 있는 불변의 성질이 형식적인 증명에 중요한 역할을 한다. 또한 도형에 기호를 붙이는 활동은 형식적인 증명을 어렵게 만드는 요인 중의 하나인 명제나 정리의 기호적 표현을 보다 자연스럽게 할 수 있게 해 준다. 그러나, 학생들이 증명은 더 이상 필요 없으며, 실험을 통한 확인만으로도 추측의 정당성을 보장받을 수 있다는 그릇된 ·인식을 심어줄 수도 있다. 따라서 모든 경우에 성립하는 지를 실험과 실측으로 확인할 수는 없다는 점을 강조하여 학생들에게 형식적인 증명의 중요성과 필요성을 인식시킬 필요가 있다. 본 연구에 대한 다음과 같은 후속연구가 필요하다. 첫째, Cabri II 를 이용한 증명 수업이 학생들의 증명 수행 능력 또는 증명에 대한 이해에 어떤 영향을 끼치는지 특히, van Hiele의 기하학습 수준이론에 어떻게 작용하는 지를 연구할 필요가 있다. 둘째, 본 연구에서 제시한 Cabri II 를 이용한 증명 교수학습 방법에 대한 구체적인 사례연구가 요구되며, 특히 탐구, 추측을 통한 비형식적인 중명에서 형식적 증명으로의 전이 과정에서 나타날 수 있는 학생들의 반응에 대한 조사연구가 필요하다.

  • PDF

An Analysis of Students' Understanding of Mathematical Concepts and Proving - Focused on the concept of subspace in linear algebra - (대학생들의 증명 구성 방식과 개념 이해에 대한 분석 - 부분 공간에 대한 증명 과정을 중심으로 -)

  • Cho, Jiyoung;Kwon, Oh Nam
    • School Mathematics
    • /
    • v.14 no.4
    • /
    • pp.469-493
    • /
    • 2012
  • The purpose of this study is find the relation between students' concept and types of proof construction. For this, four undergraduate students majored in mathematics education were evaluated to examine how they understand mathematical concepts and apply their concepts to their proving. Investigating students' proof with their concepts would be important to find implications for how students have to understand formal concepts to success in proving. The participants' proof productions were classified into syntactic proof productions and semantic proof productions. By comparing syntactic provers and semantic provers, we could reveal that the approaches to find idea for proof were different for two groups. The syntactic provers utilized procedural knowledges which had been accumulated from their proving experiences. On the other hand, the semantic provers made use of their concept images to understand why the given statements were true and to get a key idea for proof during this process. The distinctions of approaches to proving between two groups were related to students' concepts. Both two types of provers had accurate formal concepts. But the syntactic provers also knew how they applied formal concepts in proving. On the other hand, the semantic provers had concept images which contained the details and meaning of formal concept well. So they were able to use their concept images to get an idea of proving and to express their idea in formal mathematical language. This study leads us to two suggestions for helping students prove. First, undergraduate students should develop their concept images which contain meanings and details of formal concepts in order to produce a meaningful proof. Second, formal concepts with procedural knowledge could be essential to develop informal reasoning into mathematical proof.

  • PDF