• Title/Summary/Keyword: 이온화에너지

Search Result 468, Processing Time 0.03 seconds

Applying Rosen-type PZT plasma generation device for medical applications (로젠형 압전변압기를 적용한 의료융합 플라즈마기기)

  • Lee, Kang-yeon;Jung, Byung-Geun;Park, Jeong-sook;Park, Ju-Hoon;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.243-250
    • /
    • 2021
  • In the medical field, applications of plasma are applied sterilize instruments mainly but with the advent of bio-plasma technology, the scope of application is expanding. Recently, In addition, high-density miniaturization with handheld is required for sophisticated procedures when irradiated directly or treated with non-standard conditions. Rosen-type PZT is a device with a structure that generates high voltage plasma by achieving voltage transformation through electro-mechanical coupling using piezoelectric effect.and is used in portable plasma generating devices as an advantage to increase energy density relatively. In this paper, Rosen-type PZT was modeled using equivalent circuits and was carried out and a plasma generating device for medical application was designed and prototype tested. Prototype plasma generating device generates an output voltage of 5.8 kV with 12V input power and is designed to operate at high voltage by applying the half-bridge topology power converter. The results of the study confirmed the availability of various medical devices, such as plasma jets or direct exposure equipment.

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(III) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(III) - 열역학적 특성을 중심으로)

  • Na, Choon-Ki;Jeong, Jin-Hwa;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.260-269
    • /
    • 2012
  • The aim of this study is to evaluate the applicability of adsorption models for understanding the thermodynamic properties of adsorption process. For this study, the adsorption isotherm data of $NO_3$-N ion onto a commercial anion exchange resin obtained at various experimental conditions, i.e. different initial concentrations of adsorbate, different dosages of adsorbent, and different temperatures, were used in calculating the thermodynamic parameters and the adsorption energy of adsorption process. The Gibbs free energy change (${\Delta}G^0$) of adsorption process could be calculated using the Langmuir constant $b_M$ as well as the Sips constant, even though the results were significantly dependant on the experimental conditions. The thermodynamic parameters such as standard enthalpy change (${\Delta}H^0$), standard entropy change (${\Delta}S^0$) and ${\Delta}G^0$ could be calculated by using the experimental data obtained at different temperatures, if the adsorption data well fitted to the Langmuir isotherm model and the plot of ln b versus 1/T gives a straight line. As an alternative, the empirical equilibrium constant(K) defined as $q_e/C_e$ could be used for evaluating the thermodynamic parameters instead of the Langmuir constant. The results from the applications of D-R model and Temkin model to evaluate the adsorption energy suggest that the D-R model is better than Temkin model for describing the experimental data, and the availability of Temkin model is highly limited by the experimental conditions. Although adsorption energies determined using D-R model show significantly different values depending on the experimental conditions, they were sufficient to show that the adsorption of $NO_3$-N onto anion exchange resin is an endothermic process and an ion-exchange process.

Synthesis and Electrochemical Performance of Ni-rich NCM Cathode Materials for Lithium-Ion Batteries (리튬이온전지 양극활물질 Ni-rich NCM의 합성과 전기화학적 특성)

  • Kim, Soo Yeon;Choi, Seung-Hyun;Lee, Eun Joo;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Layered Ni-rich NCM cathode materials $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$) have advantages of high energy density and cost competitive over $LiCoO_2$. The discharge capacity of NCM increases proportionally to the Ni contents. However, there is a problem that it is difficult to realize the stable electrochemical performance due to cation mixing. In this study, synthesis conditions for the layered Ni-rich NCMs are investigated to achieve deliver the ones having good electrochemical performances. Synthesis parameters are atmosphere, lithium source, synthesis time, synthesis temperature and Li/M (M=transition metal) ratio. The degree of cation mixing gets worse as the Ni content is increased from $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6) to $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8). It is confirmed that higher level of cation mixing affects negatively on the electrochemical performance of NCMs. Optimum synthesis conditions are explored for NCMx (x=6, 7, 8) in order to reduce the cation mixing. Under optimized conditions for three representative NCMx, a high initial discharge capacity and a good cycle life are obtained for $180mAh{\cdot}g^{-1}$, 96.2% (50 cycle) in NCM6, $187mAh{\cdot}g^{-1}$, 94.7% (50 cycle) in NCM7, and $201mAh{\cdot}g^{-1}$, 92.7% (50 cycle) in NCM8, respectively.

Effect of Organic Matter and Moisture Content on Reduction of Cr(VI) in Soils by Zerovalent Iron (영가철에 의한 토양 Cr(VI) 환원에 미치는 유기물 및 수분함량 영향)

  • Yang, Jae-E.;Lee, Su-Jae;Kim, Dong-Kuk;Oh, Sang-Eun;Yoon, Sung-Hwan;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.60-65
    • /
    • 2008
  • Current soil remediation principles for toxic metals have some limitations even though they vary with different technologies. An alternative technology that transforms hazardous substances into nonhazardous ones would be environmentally beneficial. Objective of this research was to assess optimum conditions for Cr(VI) reduction in soils as influenced by ZVI(Zero-Valent Iron), organic matter and moisture content. The reduction ratio of Cr(VI) was increased from 37 to 40% as organic matter content increased from 1.07 to 1.75%. In addition, Cr(VI) concentration was reduced as soil moisture content increased, but the direct effect of soil moisture content on Cr(VI) reduction was less than 5% of the Cr(VI) reduction ratio. However, combined treatment of ZVI(5%), organic matter(1.75%) and soil moisture(30%) effectively reduced the initial Cr(VI) to over 95% within 5 days and nearly 100% after 30 days by increasing oxidation of ZVI and concurrent reduction of Cr(VI) to Cr(III). The overall results demonstrated that ZVI was effective in remediating Cr(VI) contaminated soils, and the efficiency was synergistic with the combined treatments of soil moisture and organic matter.

The Change in Geotechnical Properties of Clay Liner and the Contamination Behavior of Groundwater Due to Contaminant (오염물질에 의한 점토 차수재의 역학적 특성변화 및 지하수 오염거동)

  • Ha, Kwang-Hyun;Lee, Sang-Eun;Chung, Sung-Rae;Chun, Byung-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • The triaxial compression tests and consolidation tests using NaCl solution and leachates as substitute pore (or saturated) water in samples were carried out to find out the behavior characteristics of strength, deformation and permeability coefficient of contaminated clay. Also, the chemical property analysis on the clay samples using scanning electron microscope and energy dispersive x-ray spectrometer were involved. The magnitudes of composition ratio were shown in the order of O, C, Si, Al, and Fe as a result of chemical composition analysis for clay samples. Besides, as the results of triaxial compression tests and consolidation tests, the shear strength, compression and permeability properties were increased with increasing in the concentration of contaminant (NaCl). It may be considered that these circumstances be caused by the changes of soil structure to flocculent structure due to the decrease in the thickness of diffuse double layer with increasing in the concentration of electrolyte. MT3D model was also using to grasp the procedures that the groundwater may be contaminated by the leachates permeated through the clay liner. The results of contaminant transport analysis showed a tendency that the predicted concentration of groundwater was higher with increasing in the initial concentration of $Cl^-$ ion and increased as a nonlinear curves with time. The transportation distance calculated by the use of regression equation between the distance from contaminant source and the concentration of $Cl^-$ ion was increased with increasing the initial concentration.

Influence of the Mesophyll on the Change of electrical Potential Difference of Guard Cells Induced by Red-light and CO2 in Commelina communis L. and Tradescantia virginiana L. (닭의장풀과 자주달개비에서 적색광과 이산화탄소에 의해 유도된 공변세포의 전위차 변화에 미치는 엽육세포의 영향)

  • 이준상
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.383-389
    • /
    • 1993
  • The effects of light and $CO_2$ on the electrophysiological characteristics of guard cells in the intact leaf and in the detached epidermis have been investigated. Guard cells in intact leaves showed the membrane hyperpolarization in response to light. The biggest induced change of the membrane potential difference (PD) in the guard cells of the intact leaf was 13 m V by light and 42 mV by $CO_2$ in Commelina communis. Similar results were obtained with Tradescantia virginiana. However, there were no changes of membrane PD in detached epidermis. In order to determine the influence of the mesophyll on the changes of membrane PD, infiltration of the mesophyll cells with photosynthetic inhibitors was performed. In CCCP infiltrated leaf discs the guard cell membrane was depolarized slightly by red-light and hyperpolarized by $CO_2$, but in leaf discs infiltrated with DCCD and DCMU the guard cell membrane was hyperpolrized by both red-light and $CO_2$ as the control leaf discs. In azide infiltrated leaf discs the guard cell membrane showed no response to light and there was a much reduced membrane hyperpolarization by $CO_2$ compared to other responses. It was likely that azide caused leaf damage and the activity of cell metabolism was decreased greatly, resulting in small membrane PD changes by $CO_2$ and no changes by redlight. Therefore, it can be suggested that red light was sensed by the mesophyll and the light induced guard cell membrane hyperpolarization was related to energy produced by cyclic-photophosphorylation, but ${CO_2}-induced$ guard cell membrane hyperpolarization was not related to photosynthesis. Alkalisation of the vacuole was observed when the intact leaf was exposed to $CO_2$, indicating that membrane hyperpolarization was mainly the result of proton efflux.efflux.

  • PDF

Dependence of Thermal and Electrochemical Properties of ceramic Coated Separators on the Ceramic Particle Size (알루미나 크기에 따른 세라믹 코팅 분리막의 열적 특성 및 전기화학적 특성)

  • Park, Sun Min;Yu, Ho Jun;Kim, Kwang Hyun;Kang, Yun Chan;Cho, Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • Conventional lithium ion batteries suffer from notorious safety issues caused by inevitable lithium dendrite formation and proliferation during over/fast charging processes. The lithium dendrites or mechanical damage on the separator induce internal short circuit in LiB that generates extensive amount of heat within contacted electrode surfaces through the separator. During this heat generation, conventional polyolefin separators shrinks dramatically, and increasing short circuit pathway, that causes the battery to explode. To overcome this serious issue, ceramic coated separators are developed in commercial LiB to enhance thermal and mechanical stability. In this paper, various size(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm) of $Al_2O_3$ particles are coated using styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) binder on PE separator to investigate its thermal stability and electrochemical effect on LiB coin cell with NCM cathode and Li metal anode.

A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature: As an Anode Media of SO-DCFC (SO-DCFC 적용을 위한 카본블랙-탄산염 혼합 매개체의 고온 반응 특성에 대한 연구)

  • Yu, Jun Ho;Kang, Kyungtae;Hwang, Jun Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.677-685
    • /
    • 2014
  • A direct carbon fuel cell (DCFC) generates electricity directly by converting the chemical energy in coal. In particular, a DCFC system with a solid oxide electrolyte and molten carbonate anode media has been proposed by SRI. In this system, however, there are conflicting effects of temperature, which enhances the ion conductivity of the solid electrolyte and reactivity at the electrodes while causing a stability problem for the anode media. In this study, the effect of temperature on the stability of a carbon-carbonate mixture was investigated experimentally. TGA analysis was conducted under either nitrogen or carbon dioxide ambient for $Li_2CO_3$, $K_2CO_3$, and their mixtures with carbon black. The composition of the exit gas was also monitored during temperature elevation. A simplified reaction model was suggested by considering the decomposition of carbonates and the catalyzed Boudouard reactions. The suggested model could well explain both the measured weight loss of the mixture and the gas formation from it.

Visible Light Responsive Titanium Dioxide (TiO2) (가시광 감응 산화티탄(TiO2))

  • Shon, Hokyong;Phuntsho, Sherub;Okour, Yousef;Cho, Dong-Lyun;Kim, Kyoung Seok;Li, Hui-Jie;Na, Sukhyun;Kim, Jong Beom;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Titanium dioxide ($TiO_2$) is one of the most researched semiconductor oxides that has revolutionised technologies in the field of environmental purification and energy generation. It has found extensive applications in heterogenous photocatalysis for removing organic pollutants from air and water and also in hydrogen production from photocatalytic water-splitting. Its use is popular because of its low cost, low toxicity, high chemical and thermal stability. But one of the critical limitations of $TiO_2$ as photocatalyst is its poor response to visible light. Several attempts have been made to modify the surface and electronic structures of $TiO_2$ to enhance its activity in the visible light region such as noble metal deposition, metal ion loading, cationic and anionic doping and sensitisation. Most of the results improved photocatalytic performance under visible light irradiation. This paper attempts to review and update some of the information on the $TiO_2$ photocatalytic technology and its accomplishment towards visible light region.

Characterization of Al-Doped ZnO Thin Film Grown on Buffer Layer with RF Magnetron Sputtering Method (버퍼 층을 이용한 RF 마그네트론 스퍼터 방법에 의한 Al:ZnO 박막의 성장)

  • No, Young-Soo;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.213-220
    • /
    • 2009
  • The optimal condition of low temperature deposition of transparent conductive Al-doped zinc oxide (AZO) films is studied by RF magnetron sputtering method. To achieve enhanced-electrical property and good crystallites quality, we tried to deposit on glass using a two-step growth process. This process was to deposit AZO buffer layer with optimal growth condition on glass in-situ state. The AZO film grown at rf 120 W on buffer layer prepared at RF $50{\sim}60\;W$ shows the electrical resistivity $3.9{\times}10^{-4}{\Omega}cm$, Carrier concentration $1.22{\times}10^{21}/cm^3$, and mobility $9.9\;cm^2/Vs$ in these results, The crystallinity of AZO film on buffer layer was similar to that of AZO film on glass with no buffer later but the electrical properties of the AZO film were 30% improved than that of the AZO film with no buffer layer. Therefore, the cause of enhanced electrical properties was explained to be dependent on degree of crystallization and on buffer layer's compressive stress by variation of $Ar^+$ ion impinging energy.