Visible Light Responsive Titanium Dioxide (TiO2)

가시광 감응 산화티탄(TiO2)

  • Shon, Hokyong (Faculty of Engineering, University of Technology) ;
  • Phuntsho, Sherub (Faculty of Engineering, University of Technology) ;
  • Okour, Yousef (Faculty of Engineering, University of Technology) ;
  • Cho, Dong-Lyun (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University) ;
  • Kim, Kyoung Seok (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University) ;
  • Li, Hui-Jie (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University) ;
  • Na, Sukhyun (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University) ;
  • Kim, Jong Beom (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University) ;
  • Kim, Jong-Ho (School of Applied Chemical Engineering & The Research Institute for Catalysis, Chonnam National University)
  • 손호경 (시드니공과대학교 환경공학부) ;
  • ;
  • ;
  • 조동련 (전남대학교 응용화학공학부 촉매연구소) ;
  • 김경석 (전남대학교 응용화학공학부 촉매연구소) ;
  • 이휘지 (전남대학교 응용화학공학부 촉매연구소) ;
  • 나숙현 (전남대학교 응용화학공학부 촉매연구소) ;
  • 김종범 (전남대학교 응용화학공학부 촉매연구소) ;
  • 김종호 (전남대학교 응용화학공학부 촉매연구소)
  • Received : 2008.01.25
  • Published : 2008.02.10

Abstract

Titanium dioxide ($TiO_2$) is one of the most researched semiconductor oxides that has revolutionised technologies in the field of environmental purification and energy generation. It has found extensive applications in heterogenous photocatalysis for removing organic pollutants from air and water and also in hydrogen production from photocatalytic water-splitting. Its use is popular because of its low cost, low toxicity, high chemical and thermal stability. But one of the critical limitations of $TiO_2$ as photocatalyst is its poor response to visible light. Several attempts have been made to modify the surface and electronic structures of $TiO_2$ to enhance its activity in the visible light region such as noble metal deposition, metal ion loading, cationic and anionic doping and sensitisation. Most of the results improved photocatalytic performance under visible light irradiation. This paper attempts to review and update some of the information on the $TiO_2$ photocatalytic technology and its accomplishment towards visible light region.

산화티탄은 가장 많이 연구된 반도체 산화물로 환경 정화와 에너지 생산에 응용이 크게 기대되고 있다. 공기와 물 속의 유해 유기물을 제거하고 물분해를 통한 수소 생산은 대표적인 응용 분야이다. 산화티탄의 저렴한 가격, 낮은 독성, 화학적 및 열적 안정성은 잘 알려진 장점이다. 그러나, 산화티탄의 단점은 가시광 영역에서 광촉매 활성이 낮다는 점이다. 이러한 문제점을 해결하기 위하여, 귀금속, 금속, 양이온, 음이온 도핑 방법으로 산화티탄의 표면과 전기적 구조를 변형시켜 가시광 영역에서 광촉매 활성을 높이기 위한 연구가 많이 진행되고 있다. 이번 총설에서는 산화티탄의 가시광 감응을 유도하는 방법에 대한 광범위한 정보를 정리하였다.

Keywords

Acknowledgement

Supported by : Chonnam National University

References

  1. A. Di Paola, E. Garcia-Lopez, S. Ikeda, G. Marci, B. Ohtani, and L. Palmisano, Catalysis Today, 75, 87 (2002) https://doi.org/10.1016/S0920-5861(02)00048-2
  2. S. Klosek and D. Raftery, J. Phys. Chem. B, 105, 2815 (2001) https://doi.org/10.1021/jp004295e
  3. O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, J. Phys. Chem. B, 108, 6004 (2004) https://doi.org/10.1021/jp031267y
  4. R. Bacsa, J. K. Kiwi, T. Ohno, P. Albers, and V. Nadtochenko, J. Phys. Chem. B Condens Matter Mater Surf Interfaces Biophys, 109, 5994 (2005)
  5. S. Kim, S. J. Hwang, and W. Choi, J. Phys. Chem. B, 109, 24260 (2005) https://doi.org/10.1021/jp055278y
  6. B. Xin, L. Jing, Z. Ren, B. Wang, and H. Fu, J. Phys. Chem. B, 109, 2805 (2005) https://doi.org/10.1021/jp0469618
  7. Y. Q. Wang, X. J. Yu, and D. Z. Sun, Journal of Hazardous Materials, 144, 328 (2006)
  8. G. Colon, M. Maicu, M. C. Hidalgo, and J. A. Navio, Applied Catalysis B: Environmental, 67, 41 (2006) https://doi.org/10.1016/j.apcatb.2006.03.019
  9. J. Zhao, C. Chen, and W. Ma, Topics in Catalysis, 35, 269 (2005) https://doi.org/10.1007/s11244-005-3834-0
  10. H. Yamashita, M. Takeuchi, and M. Anpo, Visible-light-sensitive Photocatlaysts. Encyclopedia of Nanoscience and Nanotechnology (2004).
  11. M. Anpo and M. Takeuchi, Journal of Catalysis, 216, 505 (2003) https://doi.org/10.1016/S0021-9517(02)00104-5
  12. M. Anpo, Catalysis Surveys from Japan, 1, 169 (1997) https://doi.org/10.1023/A:1019024913274
  13. M. Anpo, Bull. Chem. Soc. Jpn., 77, 1427 (2004) https://doi.org/10.1246/bcsj.77.1427
  14. D. Chatterjee and S. Dasgupta., Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 186, (2005)
  15. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, Renewable and Sustainable Energy Reviews, 11, 401 (2007) https://doi.org/10.1016/j.rser.2005.01.009
  16. B. Jelks, Titanium: its occurrence, chemistry and technology, New York, Ronald Press (1966)
  17. N. Serpone and E. Pelizzetti, Photocatalysis: Fundamentals and Applications, New York, John Wiley & Sons (1989)
  18. M. Kaneko and I. Okura, Photocatalysis: Science and Technology, Springer, Tokyo, 33 (2002)
  19. H. K. Shon, S. Vigneswaran, I. S. Kim, J. Cho, G. J. Kim, J. B. Kim, and J. H. Kim, Environmental Science & Technology, 41, 1372 (2007) https://doi.org/10.1021/es062062g
  20. A. Fujishima and K. Honda, Nature, 238, 37 (1972) https://doi.org/10.1038/238037a0
  21. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C: Photo Chem Reviews, 1, 1 (2000) https://doi.org/10.1016/S1389-5567(00)00002-2
  22. B. A. Kennedy, Surface Mining: 2nd edition (1990)
  23. T. Brock and M. Groteklaes, Mischke., European Coatings Handbook (2000)
  24. B. McKay, Technological Applications of dispersions (1994)
  25. R. Noyes, Pollution prevention technology handbook. Noyes Publication, Park Ridge, New Jersey (1993)
  26. E. Arpac, F. Saylkan, M. Asiltürk, P. Tatar, N. Kiraz, and H. Saylkan, Journal of Hazardous Materials, 140, 69 (2007) https://doi.org/10.1016/j.jhazmat.2006.06.057
  27. S. G. Lee, S. Lee, H.-I. Lee, Applied Catalyst A: General, 207, 173 (2001) https://doi.org/10.1016/S0926-860X(00)00671-2
  28. N. L. Wu and M. S. Lee, International Journal of Hydrogen Energy, 29, 1601 (2004) https://doi.org/10.1016/j.ijhydene.2004.02.013
  29. A. A. Nada, M. H. Barakat, H. A. Hamed, N. R. Mohamed, and T. N. Veziroglu, Int. Journal Hydroden Energy, 30, 687 (2005) https://doi.org/10.1016/j.ijhydene.2004.06.007
  30. T. Kida, G. Guan, N. Yamada, T. Ma, K. Kimura, and A. Yoshida, International Journal of Hydrogen Energy, 29, 269 (2004) https://doi.org/10.1016/j.ijhydene.2003.08.007
  31. A. Patsoura, D. I. Kondarides, and X. E. Verykios, Catalysis Today, 124, 94 (2007) https://doi.org/10.1016/j.cattod.2007.03.028
  32. W. Cui, L. Feng, C. Xu, S. Lü, and F. Qiu, Catalysis Communication, 5, 533 (2004) https://doi.org/10.1016/j.catcom.2004.06.011
  33. K. Sayama and H. Arakawa, J Photochem Photobiol A: Chem., 77, 243 (1994) https://doi.org/10.1016/1010-6030(94)80049-9
  34. K. Sayama and H. Arakawa, J Photochem Photobiol A: Chem., 94, 67 (1996) https://doi.org/10.1016/1010-6030(95)04204-0
  35. K. Hashimoto, T. Kawai, and T. Sakata, J. Phys. Chem., 88, 4083 (1984) https://doi.org/10.1021/j150662a046
  36. G. R. Bamwenda, S. Tsubota, T Nakamura, and M. Haaruta, J. Photochem Photobiol A: Chem., 89, 177 (1995) https://doi.org/10.1016/1010-6030(95)04039-I
  37. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science, 293, 269 (2001) https://doi.org/10.1126/science.1061051
  38. G. R. Torres, T. Lindgren, J. Lu, C. G. Granqvist, S. E. Lindquist, J. Phys. Chem., B, 108, 5995 (2004) https://doi.org/10.1021/jp037477s
  39. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, and M. Anpo, Catalysis Today, 84, 191 (2003) https://doi.org/10.1016/S0920-5861(03)00273-6
  40. M. Anpo, M. Takeuchi, K. Ikeue, and S. Dohshi, Curr Opin Solid State Mater Sci., 6, 381 (2002) https://doi.org/10.1016/S1359-0286(02)00107-9
  41. Y. Li, G. Lu, and S. Li, Applied Catalyst A: General, 214, 179 (2001) https://doi.org/10.1016/S0926-860X(01)00491-4
  42. X. S. Wu, Z. Ma, Y. N. Qin, X. Z. Qi, and Z. C. Liang, Wuli Huaxue Xuebao, 20, 138 (2004)
  43. J. Yuan, M. Chen, J. Shi, and W. Shangguan, International Journal of Hydrogen Energy, 31, 1326 (2006) https://doi.org/10.1016/j.ijhydene.2005.11.016
  44. A. J. William, M. B. Daniel, J. A. F. James, and E. Boulter, LeAnn, Air and waste management, 46, 891 (1996) https://doi.org/10.1080/10473289.1996.10467525
  45. Y. Masahiro, K. Yoshiyuki, R. Ariffin, T. Kazunori, K. Shinji, M. Akira, S. H. Lee, Y. K. Hong, and S. Y. Shin, Seidenki Gakkai Koen Ronbunshu, 1999, 47 (1999)
  46. A. Heller, Ass. Chem. Res, 28, 503 (1995) https://doi.org/10.1021/ar00060a006
  47. H. Ichiura, T. Kitaoka, and H. Tanaka, Chemosphere, 50, 79 (2003) https://doi.org/10.1016/S0045-6535(02)00604-5
  48. L. Bonafous, Photo-catalysis Applied to Cementitious Materials. National Science Foundation Workshop on NanoModification of Cementitious Material, Gainesville, FL. (2006)
  49. L. Wang, Paving out pollution: A common whitener helps to clean the air. Scientific American.com (2002)
  50. B. Giussani, A concrete Step Toward Cleaner Air. Business-Week.com, November (2006)
  51. E. Povoledo, Church on The Edge of Rome Offers a Solution to Smog. The New York Times, Europe, November (2006)
  52. S. Hager and R. Bauer, chemosphere, 38, 1549 (1999) https://doi.org/10.1016/S0045-6535(98)00375-0
  53. M. C. Hidalgo, S. Sakthivel, and D. Bahnemann, Applied Catalysis A: General, 277, 183 (2004) https://doi.org/10.1016/j.apcata.2004.09.011
  54. D. H. Kim, K. S. Lee, Y. S. Kim, Y. C. Chung, and S. J. Kim, J. Am. Ceram. Soc, 89, 515 (2006) https://doi.org/10.1111/j.1551-2916.2005.00782.x
  55. C. H. Ao and S. C. Lee, Chemical Engineering Science, 60, 103 (2005) https://doi.org/10.1016/j.ces.2004.01.073
  56. H. Yanjun, F. Guohui, and Y. Quan, Experiment on $TiO_2/AC$ Photocatalysis Technique to Eliminate Toluene in Air Conditioning Systems, ICEBO, China (2006)
  57. R. M. Mohamed, A. A. Ismail, I. Othman, and I. A. Ibrahim, Journal of Molecular Catalysis A: Chemical, 238, 151 (2005) https://doi.org/10.1016/j.molcata.2005.05.023
  58. F. K. Mohammad, H. Farzana, V. C. H. L. Elena, and K. Apostolos, International Journal of Chemical ReactoE engineering, 1, A39 (2003)
  59. G. R. Peyton and D. W. DeBerry, Feasibility of Photocatalytic Oxidation for Wastewater Clean-up and Reuse. Report for 4-31 Mar (1981)
  60. H.Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, and M. Anpo, J. Photochem. Photobiol. A: Chem, 148, 257 (2002) https://doi.org/10.1016/S1010-6030(02)00051-5
  61. Z. Zhonghai, Y. Yuan, F. Yanju, L. Linhong, D. Hongchun, and J. Litong, Talanta, 73, 523 (2007) https://doi.org/10.1016/j.talanta.2007.04.011
  62. L. Frazer, Environmental Health Perspectives, 109, 174 (2001) https://doi.org/10.2307/3454883
  63. L. Marion, P. Xavier, N. Nikolaus, D. Frank, and N. Reinhard, Applied Catalysis B: Environmental, 43, 205 (2003) https://doi.org/10.1016/S0926-3373(02)00303-X
  64. K. Hofstadlert and R. Bauer, Environ. Sci. Technol, 28, 670 (1994) https://doi.org/10.1021/es00053a021
  65. M. A. Barakat, Y. T. Chen, and C. P. Huang, Applied Catalysis B: Environmental, 53, 13 (2004) https://doi.org/10.1016/j.apcatb.2004.05.003
  66. J. R. Payne and C. R. Phillips, Environ. Sci. Technol., 19, 569 (1985) https://doi.org/10.1021/es00137a602
  67. C. Minero, V. Maurino, and E. Pelizzetti, Marine Chemistry, 58, 361 (1997) https://doi.org/10.1016/S0304-4203(97)00062-5
  68. M. J. Garcia-Martinez, I. d. Riva, L. Canoira, J. F. Llamas, R. Alcantara, and J. L. R. Gallego, Applied catalyst B: Environmental, 67, 279 (2006) https://doi.org/10.1016/j.apcatb.2006.05.013
  69. A. Heller, M. Nair, L. Davidson, Z. Luo, J. Sshwtzgebel, J. Norrell, J. R. Brock, S. E. Lindquist, and J. G. Ekerdt, In: Ollas, D. F., Al-Ekabi, H. (Eds), Photocatalytic Purification and Treatment of water and Air. Elsevier, New York, 139 (1993)
  70. R. T. Dabestani and I. N. Ivanov, Photochemistry and Photobiology, 70, 10 (1999)
  71. F. Thominette and J. Verdu, Oil Chem. Pollut., 5, 333 (1989) https://doi.org/10.1016/S0269-8579(89)80024-3
  72. P. Litherathy, S. Haider, O. Samhan, and G. Morel, Water Sci. Technol., 21, 845 (1989) https://doi.org/10.2166/wst.1989.0287
  73. D. E. Nicodem, C. L. B. Guedes, and R. J. Correa, Mar. Chem., 63, 93 (1998) https://doi.org/10.1016/S0304-4203(98)00053-X
  74. S. Nagata and G. Kondo, Photo-oxidation of Crude Oils, in: Oil Spill Conference, API publication, 617 (1997)
  75. R. L. Ziolli and W. F. Jardim, J. Photochem. Photobiol. A-Chem., 155, 243 (2003) https://doi.org/10.1016/S1010-6030(02)00397-0
  76. A. Fujishima, K. Hashimoto, and T. Watanabe, $TiO_2$ Photocatalysis: Fundamentals and Applications. BKC, Tokyo (1999)
  77. Q. Xie, Z. Xu, C. Shuo, Z. Huimin, C. Jingwen, and Z. Yazhi, Chemosphere, 60, 266 (2005) https://doi.org/10.1016/j.chemosphere.2004.11.044
  78. M. Higarashi and W. F. Jardim, Catalysis Today, 76, 201 (2002) https://doi.org/10.1016/S0920-5861(02)00219-5
  79. E. Pelizzetti, C. Minero, V. Carlin, and E. Borgarello, Chemosphere, 25, 343 (1992) https://doi.org/10.1016/0045-6535(92)90551-2
  80. M. Hamerski, J. Grzechulska, and A. W. Morawski, Solar Energy, 66, 395 (1999) https://doi.org/10.1016/S0038-092X(99)00038-9
  81. R. Jothiramalingam and M. K. Wang, Journal of Hazardous Materials, In Press (2007)
  82. M. Schiavello (Ed.), Heterogeneous Photocatalysis, John Wiley & Sons, New York (1995)
  83. M. Sathish, B. Viswanathan, R. P. Viswanath, and C. S. Gopinath, Chem. Mater., 17, 6349 (2005) https://doi.org/10.1021/cm052047v
  84. J. H. Park, S. Kim, and A. J. Bard, Nano Letters, 6, 24 (2006) https://doi.org/10.1021/nl051807y
  85. C. Y. Wang, C. Y. Liu, X. Zheng, J. Chen, and T. Shen, Colloid Surf. A, 131, 271 (1998) https://doi.org/10.1016/S0927-7757(97)00086-1
  86. V. Subramanian, E. Wolf, and P. Kamat, J. Phys. Chem. B, 105, 11493 (2001) https://doi.org/10.1021/jp011588e
  87. Y. Liu, C. Liu, Q. H. Rong, and Z. Zhang, Appl. Surf. Sci., 220, 7 (2003) https://doi.org/10.1016/S0169-4332(03)00836-5
  88. N. Sobana, M. Muruganadham, and M. Swaminathan, Journal of Molecular Catalysis A: Chemical, 258, 124 (2006) https://doi.org/10.1016/j.molcata.2006.05.013
  89. A. Sclafani and J. M. Herrmann, J. Photochem. Photobiol. A Chem, 113, 181 (1998) https://doi.org/10.1016/S1010-6030(97)00319-5
  90. G. Liu, X. Zhang, Y. Xu, X. Niu, L. Zheng, and X. Ding, Chemosphere, 59, 1367 (2005) https://doi.org/10.1016/j.chemosphere.2004.11.072
  91. J. Liu, Z. Zheng K. Zuo, and Y. Wu, Journal of Wuhan University of Technology, 21, 57 (2006)
  92. A. R. Gandhe and J. B. Fernandes, J. Solid State Chem., 178, 2953 (2005) https://doi.org/10.1016/j.jssc.2005.06.034
  93. P. Bonamali, M. Sharon, and G. Nogami, Mater. Chem. Phys, 59, 254 (1999) https://doi.org/10.1016/S0254-0584(99)00071-1
  94. K. B. Dhanalakshmi, S. Latha, S. Anandan, and P. Maruthamuthu, Int. J Hydrogen Energy, 26, 669 (2001) https://doi.org/10.1016/S0360-3199(00)00134-8
  95. M. G. Kang, N. G. Park, Y. J. Park, K. S. Ry, and S. H. Chang, Sol. Energy Mater. Sol. Cells, 75, 475 (2003) https://doi.org/10.1016/S0927-0248(02)00202-7
  96. J. R. Sambrano, G. F. Nobrega, C. A. Taft, J. Andres, and A. Beltran, Surface Science, 580, 71 (2005) https://doi.org/10.1016/j.susc.2005.02.010
  97. M. Anpo and M. Takeuchi, Journal of Catalysis, 216, 505 (2003) https://doi.org/10.1016/S0021-9517(02)00104-5
  98. H. E. Chao, Y. U. Yun, F. Xing, and A. Larbot, Journal of European ceramic society, 23, 1457 (2003) https://doi.org/10.1016/S0955-2219(02)00356-4
  99. A. V. Rupa, D. Manikandan, D. Divakar, and T. Sivakumar, Journal of Hazardous Materials, In Press (2007)
  100. R. S. Sonawane and M. K. Dongare, Journal of Molecular Catalysis A: Chemical, 243, 68 (2006) https://doi.org/10.1016/j.molcata.2005.07.043
  101. A. Mirescu, H. Berndt, A. Martin, and U. Prusse, Applied Catalysis A: General, 317, 204 (2007) https://doi.org/10.1016/j.apcata.2006.10.016
  102. S. Sakthivel, M. Janczarek, and H. Kisch, J. Phys. Chem. B, 108, 19384 (2004) https://doi.org/10.1021/jp046857q
  103. K. Kontapakdee, J. Panpranot, and P. Praserthdam. Catalysis Communications, In Press (2007)
  104. T. Sreethawong and S. Yoshikawa, Catalysis Communications, 6, 661 (2005) https://doi.org/10.1016/j.catcom.2005.06.004
  105. E. S. Bardos, H. Czili, and A. Horvath, J Photochem Photobiol A: Chem, 154, 195 (2003) https://doi.org/10.1016/S1010-6030(02)00330-1
  106. W. K. Wong and M. A. Malati, Solar Energy, 36, 163 (1986) https://doi.org/10.1016/0038-092X(86)90122-2
  107. J. Zhou, M. Takeuchi, A. K. Ray, M. Anpo, and X. S. Zhao, Journal of Colloid and Interface Science, 311, 497 (2007)
  108. S. Karvinen, Solid State Sciences, 5, 811 (2003) https://doi.org/10.1016/S1293-2558(03)00082-7
  109. W. Y. Teoh, R. Amal, L. Madler, and S. E. Pratsinis, Catalysis Today, 120, 203 (2007) https://doi.org/10.1016/j.cattod.2006.07.049
  110. E. Piera, M. I. Tejedor-Tejedor, M. E. Zorn, and M. A. Anderson, Applied Catalysis B: Environmental, 4, 671 (2003)
  111. M. I. Litter, Appl Catal B: Environ, 23, 89 (1999) https://doi.org/10.1016/S0926-3373(99)00069-7
  112. W. Y. Choi, A. Termin, and M. R. Hoffmann, J. Phys. Chem., 84, 13669 (1994)
  113. S. T. Martin, C. L. Morrison, and M. R. Hoffmann, J. Phys. Chem, 98, 13695 (1994) https://doi.org/10.1021/j100102a041
  114. D. S. Muggli, S. A. Larson, and J. L. Falconer, J. Phys. Chem., 100, 15886 (1996) https://doi.org/10.1021/jp960587x
  115. M. Anpo, Y. Ichihashi, M. Takeuchi, and H. Yamashita, Res. Chem. Intermed, 24, 143 (1998) https://doi.org/10.1163/156856798X00735
  116. S. J. Hwang and D. Raftery, Catalysis Today, 49, 35 (1999)
  117. S. Pilkenton, S. J. Hwang, and D. Raftery, J. Phys. Chem. B, 103, 11152 (1999) https://doi.org/10.1021/jp9927092
  118. G. L. Zhao, H. Kozuka, H. Lin, and T. Yoko, Thin Solid Films, 339, 123 (1999) https://doi.org/10.1016/S0040-6090(98)01227-9
  119. Y. Wang, H. Cheng, L. Zhang, Y. Hao, J. Ma, B. Xu, and W. Li, Journal of Molecular Catalysis A: Chemical, 151, 205 (2000) https://doi.org/10.1016/S1381-1169(99)00245-9
  120. D. S. Hwang, N. H. Lee, D. Y. Lee, J. S. Song, S. H. Shin, and S. J. Kim, Smart Mater. Struct., 15, S74-S80 (2006) https://doi.org/10.1088/0964-1726/15/1/012
  121. U. Diebold, Surf. Sci. Rep, 48, 53 (2003) https://doi.org/10.1016/S0167-5729(02)00100-0
  122. C. Li, L. Shi, D. Xie, and H. Du, Journal of Non-Crystalline Solids, 352, 4128 (2006) https://doi.org/10.1016/j.jnoncrysol.2006.06.036
  123. B. Y. Lee, S. H Park, M. Kang, S. C. Lee, and S. J. Choung, Applied Catalysis A: General, 253, 371 (2003) https://doi.org/10.1016/S0926-860X(03)00542-8
  124. Y. J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose, and S. A. Akbar, Sensors and Actuators B Chemical, 124, 111 (2007) https://doi.org/10.1016/j.snb.2006.12.005
  125. J. C. S. Wu and C. H. Chen, J. Photochem. Photobiol. A: Chem., 163, 509 (2004) https://doi.org/10.1016/j.jphotochem.2004.02.007
  126. A. W. Xu, Y. Gao, and H. Q. Liu, J. Catal., 207, 151 (2002) https://doi.org/10.1006/jcat.2002.3539
  127. S. Sato, Chemical Physics Letters, 123, 126 (1986) https://doi.org/10.1016/0009-2614(86)87026-9
  128. H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 107, 5483 (2003) https://doi.org/10.1021/jp030133h
  129. Z. Lin, A. Orlov, R. M. Lambert, and M. C. Payne, J. Phys. Chem. B, 109, 20948 (2005) https://doi.org/10.1021/jp053547e
  130. C. D. Valentin, G. Pacchioni, and A. Selloni, Phys. Rev. B, 70, 085116 (2004) https://doi.org/10.1103/PhysRevB.70.085116
  131. K. Yang, Y. Dai, B. Huang, and S. Han, J. Phys. Chem. B, 110, 24011 (2006) https://doi.org/10.1021/jp0651135
  132. H. Irie, S. Washizuka, and K. Hashimoto, Thin Solid Films, 510, 21 (2006) https://doi.org/10.1016/j.tsf.2005.08.374
  133. Z. Wushu, C. S. Q. Tang, and L. Ying, China Nonferrous Metals Journal, 0907 (2006)
  134. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, Appl. Catal. A: Gen., 265, 115 (2004) https://doi.org/10.1016/j.apcata.2004.01.007
  135. D. Li, H. Haneda, S. Hishita, N. Ohashi, and N. K. Labhsetwar, Journal of Fluorine chemistry, 126, 69 (2005) https://doi.org/10.1016/j.jfluchem.2004.10.044
  136. M. Mrowetz, W. Balcerski, A. J. Colussi, and M. R. Hoffmann, J. Phys. Chem. B, 108, 17269 (2004) https://doi.org/10.1021/jp0467090
  137. H. Irie, Y. Watanabe, and K. Hashimoto, Chem. Lett., 32, 772 (2003a) https://doi.org/10.1246/cl.2003.772
  138. H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 107, 5483 (2003b) https://doi.org/10.1021/jp030133h
  139. M. Takeuchi, H. Yamashita, M. Matsuoka, M. Anpo, T. Hirao, and N. E. A. Itoh, Catal. Lett., 67, 135 (2000) https://doi.org/10.1023/A:1019065521567
  140. M. Anpo, S. Kishiguchi, Y. Ichihashi, M. Takeuchi, H. Yamashita, and K. Ikeue, Res Chem Intermed, 27, 459 (2001) https://doi.org/10.1163/156856701104202101
  141. A. Tsujiko, K. Kajiyama, M. Kanaya, K. Murakoshi, and Y. Nakato, Chemical Society of Japan, 76, 1285 (2003) https://doi.org/10.1246/bcsj.76.1285
  142. Z. C. Bi and H. T. Tien, Int. J. Hydrogen Energy, 9, 717 (1984) https://doi.org/10.1016/0360-3199(84)90270-2
  143. K. Gurunathan, P. Maruthamuthu, and V. C. Sastri, Int. J. Hydrogen Energy., 22, 57 (1997) https://doi.org/10.1016/S0360-3199(96)00075-4
  144. M. Stylidi, D. I. Kondarides, and X. E. Verykios, Appl. Catal. B: Environ. 47, 189 (2004) https://doi.org/10.1016/j.apcatb.2003.09.014
  145. K. Vinodgopal and P. V. Kamat, Environ. Sci. Technol., 29, 841 (1995) https://doi.org/10.1021/es00003a037
  146. Z. J. Bo, Lintao, G. Maochu, W. J. Li, L. Z. Min, Z. Ming, and Y. Chen, J. Hazard. Mater., 143, 516 (2007) https://doi.org/10.1016/j.jhazmat.2006.09.071