<학술논문> DOI http://dx.doi.org/10.3795/KSME-B.2014.38.8.677

ISSN 1226-4881(Print) 2288-5234(Online)

SO-DCFC 적용을 위한 카본블랙-탄산염 혼합 매개체의 고온 반응 특성에 대한 연구

유준호*·강경태*·황준영*[†] * 한국생산기술연구원

A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature: As an Anode Media of SO-DCFC

Jun Ho Yu^{*}, Kyungtae Kang^{*} and Jun Young Hwang^{*†} * Korea Institute of Industrial Technology

(Received March 3, 2014 ; Revised June 13, 2014 ; Accepted June 19, 2014)

Key Words: Direct Carbon Fuel Cell(직접 탄소 연료전지), Solid Oxide Electrolyte(고체산화물 전해질), Molten Carbonate Anode-Media(용융탄산염 연료극 매개체), Chemical Reaction(화학 반응)

초록: 직접 탄소 연료전지(DCFC)는 석탄을 비롯한 탄소계 연료의 화학에너지를 직접 전기로 변환시킨다. 특히, 약 10 년 전에 고체산화물 전해질을 사용하고 연료극 매개체로 용융탄산염을 사용하는 고성능 직접탄 소 연료전지 시스템이 제안되었다. 이 시스템의 경우, 운전 온도가 증가할수록 고체산화물 전해질의 이온 전도도가 향상되고 전기화학 반응이 활성화되어 성능이 향상되나, 연료극 매개체의 화학적인 안정성 문제 발생이 우려된다. 본 연구에서는 탄소-탄산염 혼합 매개체의 고온 안정성을 이해하기 위한 일련의 실험을 수행하였다. 질소 또는 이산화탄소 분위기에서 카본블랙과 혼합된 Li₂CO₃ 와 K₂CO₃ 의 TGA 분석을 수행하 였으며, 가열 과정에서 시료로부터 생성되는 가스 성분을 분석하였다. 이러한 결과를 해석하기 위하여, 탄 산염의 열분해와 탄산염 등에 의하여 가속화되는 탄소 가스화 반응을 고려한 화학반응 모델을 제시하였으 며, 실험 결과로부터 구한 매개체의 중량 손실과 가스 생성을 정성적으로 설명하였다.

Abstract: A direct carbon fuel cell (DCFC) generates electricity directly by converting the chemical energy in coal. In particular, a DCFC system with a solid oxide electrolyte and molten carbonate anode media has been proposed by SRI. In this system, however, there are conflicting effects of temperature, which enhances the ion conductivity of the solid electrolyte and reactivity at the electrodes while causing a stability problem for the anode media. In this study, the effect of temperature on the stability of a carbon-carbonate mixture was investigated experimentally. TGA analysis was conducted under either nitrogen or carbon dioxide ambient for Li₂CO₃, K₂CO₃, and their mixtures with carbon black. The composition of the exit gas was also monitored during temperature elevation. A simplified reaction model was suggested by considering the decomposition of carbonates and the catalyzed Boudouard reactions. The suggested model could well explain both the measured weight loss of the mixture and the gas formation from it.

- 기호설명 -

M : 금속 W : 중량

- P : 분압
- M : 분자량

 K1
 : 화학평형상수

 K
 : 반응률상수

 ω
 : 순반응률

 NA
 : 아보가드로수

 \chic
 : 카본블랙 입자표면 활성사이트 수밀도

† Corresponding Author: jyhwang@kitech.re.kr

© 2014 The Korean Society of Mechanical Engineers

1. 서 론

직접탄소 연료전지(Direct Carbon Fuel Cell, DCFC)

전해질	공기극	연료극	연료	선도 개발 기관
Molten Carbonate	Li-NiO	Molten carbonate	De-ashed and devolatized coal	Contained Energy, LLNL
Aqueous KOH	Ag	Compressed charcoal	Biomass char	University of Hawaii
YSZ	LSM	Molten carbonate	Raw coal	SRI
YSZ	LSM	Molten metal	Raw coal	CellTech Power, Clean Coal Energy
YSZ	LSM	Metal	Raw coal	Direct Carbon Technology, Arkon University

 Table 1 Major types of DCFC under development

는 석탄을 비롯한 탄소계(carbon based) 고형 연료의 전기화학 반응을 이용하는 연료전지이다. DCFC 의 초기 개념은 19 세기 말 미국에서 제안되었으나 상 용화 기술의 어려움으로 인하여 큰 관심을 받지 못 하고 있었다.^(1,2) 21 세기에 들어서며 미국 DOE 의 지원 하에 미국 기업과 연구기관을 중심으로 DCFC 에 대한 본격적인 연구가 다시 시작되었으며, 최근에는 중국에서도 커다란 관심을 보이고 있다.

지금까지 몇몇 선도 연구 그룹에 의하여 Table 1 과 같이 서로 다른 전해질과 서로 다른 작동 방식 을 갖는 몇 가지 종류의 DCFC 시스템이 소개되 었다.^(3~5) 그 중에서도, 고체산화물 전해질을 사용 하는 SO-DCFC(Solid Oxide Electrolyte-DCFC)는 원 탄(raw coal)을 직접 연료로 사용하기 용이하고 상 대적으로 높은 출력밀도를 구현할 수 있어 많은 관심을 받고 있다. 이러한 SO-DCFC 의 경우, 전 해질과 연료가 모두 고체 이므로, 보다 활발하고 지속적인 전기화학 반응을 위해서는 연료나 산소 이온이 쉽게 확산하여 반응할 수 있는 연료극 매 개체(media)가 필요하며, 액체 상태의 용융탄산염 이나 용융금속이 사용되는 시스템이 제안되었 다.^(6~10) 특히, 용융탄산염을 매개체로 사용하는 SO-DCFC 는 현재까지 개발된 DCFC 중에서 가장 높은 출력밀도를 보여주고 있다. (3,11)

그러나, 이론적으로 가장 단순한 전기화학반응 을 통해 전기를 생성하는 DCFC 의 장점이 무색하 게도, 용융탄산염 매개체와 탄소연료 사이의 기본 (elementary) 화학 반응 및 전기화학 반응은 매우 다양하게 존재한다.^(12~18)

그럼에도 불구하고, 각 기본 반응의 특성에 대 하여 보고된 연구 결과는 찾아보기 힘들다. 이처 럼 복잡한 반응 단계들의 혼재와 각 반응에 대한 정보의 부재는 용융탄산염 매개체를 사용하는 SO-DCFC 의 성능 및 안정성에 대한 예측을 어렵 게 하고 있다.

따라서 본 연구에서는, 용융탄산염 매개체를 사 용하는 SO-DCFC 의 연료극 반응을 규명하기 위한 기초 단계로서, 연료전지 전기화학 반응이 제외된 고온 시스템에서 연료매개체 내의 화학 반응 특성 알아보았다. 이를 위하여, 을 열중량 분석 (Thermogravimetric analysis, TGA)을 통하여 탄소-탄 산염 혼합 매개체의 질량 변화 특성을 살펴 보았으 며, 가스 분석기를 이용하여 생성 가스를 분석하였 다. 또한, 혼합 매개체에서 발생할 수 있는 상세 화 학반응으로부터 단순화된 반응 모델을 유도하였으 며, 이를 실험 결과와 정성적으로 비교하였다. 이로 부터, 탄산염과 탄소의 안정성 및 성능에 영향을 미치는 주요 반응을 파악하고, 그 반응률을 도출할 수 있는 근거 자료를 제시하였다. 본 연구의 결과 는 향후 전기화학 반응이 고려된 시스템에서의 추 가 연구를 통하여 연료 매개체에서 이루어지는 연 료극 화학반응 및 전기화학 반응을 이해하는데 유 용하게 사용될 수 있을 것으로 기대된다.

2. 실험방법

본 실험에는 EP 등급(Extra pure grade)의 탄산리 튬(Li₂CO₃)과 탄산칼륨(K₂CO₃) 및 카본블랙(Timcal Graphite & Carbon, Super P®)이 시료로 사용되었으 며, 카본블랙과 탄산염을 혼합하는 경우에는 1:1 의 중량비로 혼합하였다. 사용된 2 종의 탄산염 성분은 Table 2 와 같다.

일반적으로 용융탄산염 매개체는 탄산염의 열분 해를 방지하기 위하여 이산화탄소(CO₂) 분위기에 서 운전된다. 본 연구에서는 연료매개체의 화학반 응 특성을 알아보기 위하여 분위기의 조성을 바꾸 며 실험을 수행하였다. TGA 분석을 위하여 TA Instrument 사의 Q-500 장비를 사용하였다. 0.952 mg 의 백금 용기에 담긴 2~3 mg 의 시료를 대상 으로 분석을 수행하였다. 장비 내 챔버를 진공상

 Table 2 Chemical composition of carbonate specimens tested

Composition (wt%)	Li ₂ CO ₃	K ₂ CO ₃
Purity	> 98.0	> 99.5
Mg	< 0.05	-
Na	-	-
Pb	< 0.004	< 0.02
Cl	< 0.03	< 0.1
Ν	-	< 0.005
Fe	< 0.005	< 0.02
SO_X	< 0.2	< 0.1

Fig. 1 Schematic drawing of exit-gas measurement system

태로 만든 후,50 ml/min 의 유량으로 순도 99.999% 의 질소(N₂) 또는 이산화탄소(CO₂)를 공급하면서, 10 ℃/min 의 온도 증가율로 900 ℃ 까지 가열하며 중량 변화를 측정하였다.

TGA 분석과 유사한 가열환경에서 시료로부터 생성되는 일산화탄소(CO) 및 CO2 를 측정하기 위 하여 Fig. 1 과 같이 가스공급부, 가열로, 가스분석 기 등을 포함하는 실험 장치를 구성하였다. 내 적 이 25.72 liter 인 가열로 내에 장치된 300 ml 의 석 영 비이커에 탄산염 중량 기준 10 g 의 시료를 담 은 후, 10 ℃ /min 의 온도증가율로 900 ℃ 까지 가 열하였다. 가스공급부에서는 질량유량제어장치 (Mass Flow Controller, MFC)를 사용하여 비커 내부 로 연결된 공급관 1(Inlet 1)과 비커 외부로 연결된 공급관 2(Inlet 2)로 각각 500 ml/min 유량의 N₂ 또 는 CO2 를 공급하도록 함으로써 시료 및 가열로 내의 분위기를 형성하였다. 0 ~ 100% 범위의 CO 와 CO₂ 를 0.01% 농도 오차로 측정할 수 있는 비 분산 적외선 방식의 가스분석기(MRU Co, NOVA9K)를 사용하여 가열로에서 배출되어 상온 냉각된 가스 중의 CO 와 CO₂ 농도 데이터를 1 Hz 로 수집하였으며, 이로부터 시료에서 생성되는 CO 및 CO₂ 의 발생률을 측정하였다.

3. 결과 및 토의

3.1 탄산염의 고온 안정성

Fig. 2 은 Li₂CO₃ 와 K₂CO₃ 의 TGA 측정 결과를 보여주고 있다. 질소 분위기에서는 약 700 ℃ 이상 에서 탄산염의 열분해가 시작되는 모습을 볼 수 있다. 이처럼 질소 분위기에서 열분해가 본격적으 로 시작되는 온도는 탄산염의 종류 및 융점, T_m, 과는 크게 상관이 없으나, 열분해로 인한 무게 손 실의 강도는 Li₂CO₃ 이 상대적으로 크다. 이산화탄 소 분위기에서는 실험 범위인 900 ℃ 이하에서 대 체적으로 안정한 편이나 Li₂CO₃ 의 경우는 900 ℃ 에서 약 1%의 질량감소가 발생하였다.

탄산염은 다음의 열분해 반응에 의하여 질량이 감소한다.

$$M_2CO_3 \leftrightarrow M_2O + CO_2 \tag{1}$$

여기서 M 은 금속을 의미하며, 본 연구에서는 조 건에 따라 Li 과 K 을 나타낸다. 이러한 열분해 반 응은 탄산염의 종류별로 다소 차이가 있는데, 이는 각 탄산염 의 융점이 다를 뿐만 아니라 반응 (1)의 화학평형상수 K₁ 역시 탄산염마다 서로 다르기 때 문이다. 탄산염과 산화물이 평형상태를 유지하는 경우, 반응 (1)에 의한 탄산염의 TGA 중량 손실, ΔW 은 화학평형상수 K₁ 와 이산화탄소의 분압, P_{C02} 의 함수로서 다음과 같이 예측할 수 있다.

$$\frac{\Delta W}{W_i} = 1 - \frac{W_T}{W_i} = \frac{M_{\rm CO2}}{M_{\rm M2CO3}} \left(1 + \frac{P_{\rm CO2}}{K_1}\right)^{-1}$$
(2)

이때 W_i 와 W_T 는 각각 초기 시료 중량과 TGA 측정 중량을 의미하며, M 은 각 물질의 분자량을 나타낸다

Zanz 등⁽¹⁹⁾은 다양한 탄산염에 대한 반응 (1)의 평형상수, K₁ 을 온도의 함수로 정리하였다. 이 결 과를 인용하여, Fig. 3 에 Li₂CO₃ 와 K₂CO₃ 에 대하 여 온도에 따른 K₁ 의 변화를 나타내었다. 온도가 증가할수록 K₁ 이 지수적으로 증가하며, 특히 Li₂CO₃ 는 K₂CO₃ 에 비하여 10⁵ 배 이상 큰 값을 갖는다. K₁ 이 증가는 탄산염 열분해 반응의 활성 화를 의미하여, 식 (2)에 나타낸 바와 같이 결국 탄산염의 손실 증대로 연결된다.

질소 분위기 내에서 이산화탄소의 농도가 낮은

Fig. 2 Weight change of Li₂CO₃ and K₂CO₃ measured by TGA with 10 °C/min.

경우는 반응 (1)로 인한 이산화탄소의 생성으로 인하여 국부적인 이산화탄소의 분압을 정확히 예 측하는 것은 간단하지 않다. 만일 이산화탄소의 분압이 K_1 에 비하여 낮은 수준이라면 상당한 양 의 탄산염이 산화물로 분해될 것이다. Fig. 2 의 결 과에서, K_1 이 큰 Li₂CO₃ 의 경우 탄산염의 열분해 반응이 보다 강하게 발생하는 것을 볼 수 있다.

이산화탄소 분위기에서 2 상 계면의 이산화탄소 분압이 1 atm 으로 유지된다고 가정하면, K₂CO₃ 의 경우에는 식 (2)로부터 중량 손실률이 ppm 수준 이하로 예측되어 무시할 만하지만, K₁ 이 큰 Li₂CO₃ 의 경우에는 900 °C 에서 약 0.25% 수준으 로 예측된다. 단순화된 식과 가정에도 불구하고, 이러한 탄산염의 안정성 예측은 Fig. 2 의 실험 결 과와 경향적으로 일치하고 있다.

반응 (1)에 의한 탄산염의 중량 손실이 발생하

Fig. 3 Equilibrium constants of Reaction (1), K_1 , for Li_2CO_3 and K_2CO_3 .⁽¹⁸⁾

면 CO₂ 가 생성된다. 질소 분위기에서 온도 변화 조건에서 탄산염의 분해반응으로 생성되는 CO₂ 와 CO 의 농도를 측정하였으며, 이로부터 CO₂ 와 CO 의 생성률을 도출하여 Fig. 4 에 나타내었다. 약 700 ℃ 이상에서 눈의 띄게 중량손실이 발생하 는 Li₂CO₃ 의 경우 동일한 온도 조건에서 CO₂ 의 생성이 두드러짐을 볼 수 있는 반면, 중량 손실이 크게 발생하지 않는 K₂CO₃ 는 CO₂ 의 생성률도 상대적으로 작고, 생성 온도도 높다. 이러한 결과 는 탄산염 중량 손실이 주로 반응 (1)에 의하여 발생하는 사실을 뒷받침하고 있다. CO₂ 의 생성이 활발한 영역에서는 CO 의 신호도 관측되었으나 CO₂ 에 비하여 미약하였다.

3.2 탄소가 첨가된 탄산염의 반응

실제 DCFC 운전 조건에서와 같이 탄산염에 탄 소가 혼합되고 전해질과 전극을 통하여 O²⁻ 와 전 자가 교환되면 Table 3 에 나타낸 바와 같이 다양 한 화학반응 및 전기화학 반응이 관계될 것으로 제시되었다.⁽¹⁶⁾ 만일 외부와의 이온 교환이 없고, 용융 매개체가 이온화평형 상태를 유지한다고 가 정하면, 매개체 내의 주요 반응은 반응 (1) 이외에 다음과 같은 반응으로 축약할 수 있을 것이다.

 $C(s) + CO_2 \rightarrow 2CO \tag{3}$

 $C(s) + M_2O \iff 2M + CO \tag{4}$

 $CO_2 + 2M \iff M_2O + CO$ (5)

 $C(s) + M_2CO_3 \rightarrow M_2O + 2CO \tag{6}$

Fig. 4 Measured CO₂ and CO formation rate during heating of Li₂CO₃ and K₂CO₃ with 10 °C/min in nitrogen atmosphere

$$2C(s) + M_2CO_3 \rightarrow 2M + 3CO \tag{7}$$

위에서, 반응 (3)은 탄소계 연료의 핵심 개질 반응 으로 잘 알려진 역 Boudouard 반응이다. 또한, 반 응 (4)와 반응 (5)는 탄산염의 생성물을 매개체로 하는 가역반응으로서, 두 반응을 더하면 반응 (3) 과 동일한 반응식이 된다. 즉, 반응 (4)와 반응 (5) 는 매개체 내의 금속과 산화물에 의한 탄소 가스 화 반응의 가속을 설명하고 있다. 탄산염 내에 서 금속과 금속산화물의 농도가 균형을 유지하고 있 다면, 두 반응은 동일한 속도로 진행되며, 금속 및 금속산화물은 촉매 역할을 수행하게 된다.^(20,21) 일 반적으로 900 °C 이하에서는 이러한 촉매반응이 반응 (3)에 비하여 월등하게 우세한 것으로 알려

reaction step	reference
$M_2CO_3 \iff M_2O + CO_2$	19, 24
$C(s) + 2O^{2-} \rightarrow CO_2 + 4e$	15
$C(s) + O^{2-} \rightarrow CO + 2e$	15
$C(s) + CO_2 \iff 2CO$	15, 17
$C(s) + M_2O \iff 2M + CO$	16
$CO_2 + 2M \iff M_2O + CO$	16
$\rm CO + O^{2-} \rightarrow \rm CO_2 + 2e$	15
$2C(s) + M_2CO_3 \rightarrow 2M + 3CO$	16
$C(s) + M_2CO_3 \rightarrow M_2O + 2CO$	24
$C(s) + CO_3^{2-} \Leftrightarrow 2CO + O^{2-}$	16
$2C(s) + CO_3^{2-} \rightarrow 3CO + 2e$	16
$C(s) + 2CO_3^{2-} \rightarrow CO + CO_2 + 2e$	17
$C(s) + 2CO_3^{2-} \rightarrow 3CO_2 + 4e$	17
$\rm CO + \rm CO_3^{2-} \rightarrow 2\rm CO_2 + 2e$	24
$\mathrm{CO_3}^{2-} \leftrightarrow \mathrm{O}^{2-} + \mathrm{CO_2}$	17
$C(s) + 3O^{2-} \rightarrow CO_3^{2-} + 4e$	16

Table 3Elementary chemical and electrochemical
reactions of carbon-added carbonates as an
anode media of DCFC (16)

알려져 있다.^(22,23)

$$\omega_4 = \omega_5 = \omega_{CB} = k_{CB} [C(s)] [CO_2] >> \omega_3$$
(8)

여기서 k 와 ω 는 각 반응의 반응률상수(specific reaction rate constant)와 순반응률(net forward reaction rate)을 나타내며, 아랫첨자 CB 는 금속 촉매 가스 화 반응(metal catalyzed Boudouard gasification)을 의 미한다.

한편, 반응 (6)과 반응 (7)은 탄소와 탄산염이 혼합되어 있을 때, 탄산염의 중량손실을 유발하는 독립적인 화학반응 경로를 나타내고 있다. 이들 반응은 반응 (1)의 열분해 반응과 함께 반응 (1)의 역반응인 CO₂ 와 산화물의 재결합 반응과 경쟁하 여 탄산염의 안정성을 결정하게 된다. 다만, 탄소 가 매개체 내에서 원자 상태가 아닌 입자 상태로 존재한다면 탄소 반응은 탄소 입자의 표면 반응으 로 모사할 수 있으며, 이때 입자 표면의 활성 사 이트(active site)가 매우 조밀하지 않다면 반응 (7) 의 기여도는 크지 않을 것이다($\omega_6 >> \omega_7$). 반응 (6) 과 반응 (1)의 역반응을 더하면 역시 반응 (4)와 동일하게 된다. 만일 이 두 반응이 균형을 이루고 있다면, 탄산염을 촉매로 하는 또 하나의 반응 경 로를 구성하게 되며, 반응 (4), (5)의 금속 촉매 반 응과는 대응된다.⁽²⁴⁾

이러한 반응 조건에서 탄소-탄산염 혼합 매개체 의 CO 와 CO₂ 의 생성률(mol/cm³/s)은 다음과 같 이 단순화할 수 있다.

$$\omega_{\rm CO} = 2\left(\left(\omega_3 + \omega_{CB}\right) + \omega_6\right)$$
$$= 2\left(\left(k_3 + k_{CB}\right)\left[\rm CO_2\right] + k_6\left[M_2\rm CO_3\right]\right)\frac{\chi_C}{N_A}$$
(9)

$$\omega_{\text{CO2}} = \omega_1 - (\omega_3 + \omega_{CB})$$

= $\left(k_{1,f} [M_2 \text{CO}_3] - k_{1,b} [M_2 \text{O}] [\text{CO}_2]\right)$
 $- \left(k_3 + k_{CB}\right) [\text{CO}_2] \frac{\chi_C}{N_A}$ (10)

여기서 N_A 는 아보가드로 수이고, χ_C 는 카본 블랙 입자 표면의 활성 사이트 수밀도(cm⁻³)이다. 아랫첨자 f, b 는 각 반응식의 순반응(forward reaction)과 역반응(backward reaction)을 의미한다.

이와 유사하게, 중량 손실률, W_{tot} (g/cm3/s) 역시 탄소 연료의 가스화에 의한 중량 손실률, W_C 와 탄산염의 열분해 의한 손실률, W_{MC} 의 합으로서 다음과 같이 모델링할 수 있다.

$$\dot{W}_{tot} = \dot{W}_C + \dot{W}_{MC} \tag{11}$$

$$W_{C} = -M_{C} \left(\left(\omega_{3} + \omega_{CB} \right) + \omega_{6} \right)$$
$$= -M_{C} \left(\left(k_{3} + k_{CB} \right) [CO_{2}] + k_{6} [M_{2}CO_{3}] \right) \frac{\chi_{C}}{N_{c}}$$
(12)

$$W_{MC} = -M_{CO_{2}} \left(\omega_{1} + \omega_{6} \right)$$

= $-M_{CO_{2}} \begin{pmatrix} k_{1,f} [M_{2}CO_{3}] \\ -k_{1,b} [M_{2}O] [CO_{2}] \end{pmatrix} + k_{6} [M_{2}CO_{3}] \frac{\chi_{C}}{N_{A}} \end{pmatrix}$ (13)

식 (9) ~ 식 (13)로부터, 탄소가 없는 경우 ($\chi_c = 0$), CO 는 생성되지 않으며, CO₂ 의 생성과 탄산염의 질 량 손실은 반응 (1)에 의해서만 이루어짐을 알 수 있 으며, 이렇게 도출된 결과는 식 (2)와 부합한다. 반면 에, 식 (9)와 식 (10)으로부터, 탄소가 존재하면 ($\chi_c >$ 0) CO 가 생성되고 CO₂ 의 생성은 감소함을 예측하 고 있다. 또한, 식 (12)와 식 (13)으로부터, 매개체 내 탄소의 존재는 탄소와 탄산염의 중량손실을 초래하

Fig. 5 Weight change of carbon black-added carbonates of Li₂CO₃ and K₂CO₃ measured by TGA with 10 °C/min

여 매개체의 질량 손실을 가속화시키는 역학을 할 것으로 예측되고 있다.

Fig. 5 는 카본블랙을 탄산염과 혼합하였을 때, 온도 증가에 따른 혼합물의 중량 변화를 보여주고 있다. Fig. 2 의 카본블랙이 혼합되지 않은 결과와 비교하여, 800 ℃ 이상의 고온 영역에서 중량 감소 가 더욱 심각하게 발생하는 것을 확인할 수 있다. 탄소가 없을 때는 (χ_c = 0) 식 (12)와 식 (13)에서 주 로 ω₁ 에 의해서 질량 손실이 발생하는데 반하여, 탄소가 존재할 때는 ω₁ 뿐만 아니라 ω₃, ω_c, ω₆ 에 의해서도 혼합물의 중량이 감소하기 때문이다.

 CO_2 의 농도가 낮은 N_2 분위기에서는 ω_3 와 ω_{CB} 에 의한 탄소 가스화가 제한적이므로, 탄소 혼합에 의한 중량 감소 증가는 주로 ω_c 에 의하여

682

Fig. 6 Measured CO₂ and CO formation rate during heating of carbon black-added carbonates of Li₂CO₃ and K₂CO₃ with 10 °C/min in nitrogen atmosphere.

발생할 것이며, 이때, 탄소와 탄산염이 동시에 소 모될 것이다. Fig. 6 는 N₂ 분위기에서 탄산염과 카 본블랙의 혼합 매개체를 가열하였을 때 CO 와 CO₂ 의 발생률을 보여주고 있다. Fig. 4 에서 카본 블랙이 없을 때 주로 CO₂ 가 발생되는 것과는 달 리, CO₂ 의 발생률은 상대적으로 낮은 수준에 머 물고 있으며, 주로 CO 가 발생하고 있음을 볼 수 있다. 이러한 결과는 ω_1 에 비하여 더욱 활발히 진행되는 ω_2 의 중요성을 잘 보여주고 있다.

한편, CO₂ 분위기에서는 ω_6 이외에도 ω_3 과 ω_{CB} 에 의하여 중량감소가 발생할 수 있다. Fig. 7 은 분위기가 CO₂ 일 때 혼합 매개체로부터 발생하는 CO 의 생성률을 보여주고 있다. CO₂ 분위기에서 탄소 가스화 반응, $\omega_3 + \omega_{CB}$ 이 더욱 활성화되어

Fig. 7 Measured CO formation rate during heating of carbon black and carbon black-added carbonates of Li₂CO₃ and K₂CO₃ with 10 °C/min in CO₂ atmosphere.

CO 의 반응률이 N₂ 분위기에 비하여 크게 증가하 는 결과를 확인할 수 있다.

이처럼 Fig. 7 에서 탄소 가스화 반응이 크게 활 성화되는 결과를 얻었음에도 불구하고, Fig. 5 에서 전체적인 혼합물의 중량 감소는 상대적으로 크게 증가하는 모습을 보여주지 않았다. 이러한 결과는 CO₂ 분위기에서 ω_1 의 역반응에 의한 탄산염의 재 합성으로 인하여 전체적인 중량감소가 제한되었기 때문이다. 이 경우, 탄산염과 카본블랙이 동시에 소모되는 N₂ 분위기와는 달리, 주로 카본블랙 위 주로 소모될 것이다.

이상에서 살펴 본 바와 같이, 가열 분위기와 카 본블랙의 혼합 여부에 따른 CO 와 CO₂ 의 발생 특성은 식 (9)와 식 (10)을 활용하여 설명할 수 있 다. 끝으로, Fig. 7 에 탄산염이 없이 카본블랙만을 가열하였을 때 CO 의 발생률을 함께 도시하였으며, 이로부터 탄소 가스화 반응의 촉매로서 탄산염이 중요한 역할을 수행하고 있음을 확인할 수 있다.

4. 결 론

고출력 SO-DCFC 의 연료극 매개체로서 활용이 기대되고 있는 탄소-탄산염 혼합물의 고온 반응 특성을 알아보기 위하여, 카본블랙을 혼합한 Li₂CO₃ 및 K₂CO₃ 매개체를 N₂ 또는 CO₂ 분위기에 서 900 ℃ 까지 가열하며 중량 손실 특성과 가스 생성 특성을 실험적으로 알아보았다. 순수한 탄산 염의 경우, № 분위기에서 탄산염의 열분해 반응 에 의한 탄산염의 중량 손실이 발생하였으며, 이 과정에서 주로 CO₂ 가 발생하였다. CO2 분위기에 서는 탄산염의 열분해 반응이 억제되며, 안정성이 크게 개선되었다. 탄산염에 카본블랙을 혼합하면 분위기와 상관없이 800 °C 이상의 고온에서 순수 탄산염에 비하여 더욱 현저한 중량 손실이 발생하 였다. 또한 카본블랙이 혼합된 탄산염 매개체에서 는 중량 손실과 함께 발생하는 주 생성물이 CO₂ 가 아닌 CO 임을 확인할 수 있었다.

이러한 현상을 고출력 SO-DCFC 의 연료극 매 개체로서 활용이 기대되고 있는 탄소-탄산염 혼합 물의 고온 반응 특성을 해석하기 위하여 탄산염의 열분해 반응과 그 역반응인 재결합 반응, 고온 탄 소 가스화 반응, 금속 촉매 탄소 가스화 반응, 탄 소-탄산염 가스화 반응을 고려한 반응 기구 모델 을 제시하였다. 제시된 반응 모델로부터 탄소 및 탄산염 중량 손실률과 CO 및 CO2 생성률을 모델 링하였으며, 이를 이용하여 실험 결과를 정성적으 로 설명할 수 있었다. 그러나 본 연구 결과만으로 는 800 ℃ 이상의 고온에서 카본블랙과 탄산염의 혼합 매개체로부터 발생하는 중량 손실 중 탄소 가스화 반응과 탄산염 열분해 반응의 상대적인 기 여도를 정량적으로 예측하기 어려웠다. 두 반응의 상대적인 속도를 이해하는 것은 향후 DCFC 의 성능 및 안정성을 예측하는데 매우 중요하며, 이 를 위하여 후속 연구가 필요하다.

후 기

본 연구는 2011 년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다 (No. 20113020030010).

참고문헌 (References)

- (1) Edison, T. A., 1891, US Patent No. 460,122.
- (2) Jacques, W. W., 1896, US Patent No. 555,511.
- (3) Wolk, R. H., Lux, S., Gelber, S. and Holcomb, R. H., 2007, "Direct Carbon Fuel Cells: Converting Waste to Electricity," Report ERDC/CERL TR-07-32, p. 54.
- (4) Cao, D., Sun, Y. and Wang, G., 2007, "Direct Carbon Fuel Cell: Fundamentals and Recent Developments," *J. of Power Source*, Vol 167, pp. 250~257.
- (5) Giddey, S., Badwal, S. P. S., Kulkarni, A. and Munnings, C., 2012, "A Comprehensive Review of Direct Carbon Fuel Cell Technology," *Progress in Energy and Combustion Science*, Vol. 38, pp. 360~399.

- (6) Yentekakis, I. V., Debenedetti, P. G. and Costa, B., 1989, "A Novel Fused Metal Anode Solid Electrolyte Fuel-cell for Direct Coal-gasification - a Steady-state Model," *Industrial & Engineering Chemistry Research*, Vol 28, pp. 1414~1424.
- (7) Balachov, I. I., Dubois, L. H., Hornbostel, M. D. and Lipilin, A. S., 2005, Presented in Fuel Cell Seminar, Direct Carbon Fuel Cell Workshop, Palm Springs, CA, USA, , Proceedings online:http://www.fuelcellseminar.com/pdf/Direct_Carbon

_Fuel_Cell_Workshop/Balachov_Iouri.pdf.

- (8) Pointon, K., Lakeman, B., Irvine, J., Bradley, J. and Jain, S., 2006, "The Development of a Carbon-air Semi Fuel Cell," *Journal of Power Sources*, Vol. 162, pp. 750~756.
- (9) McPhee, W. A. G., Boucher, M., Stuart, J., Parnas, R. S., Koslowske, M., Tao, T. and Wilhite, B. A., 2009, "Demonstration of a Liquid-tin Anode Solid-oxide Fuel Cell (LTA-SOFC) Operating from Biodiesel Fuel," *Energy* & *Fuels*, Vol. 23, pp. 5036~5041.
- (10) Jayakumar, A., Vohs, J. M. and Gorte, R. J., 2010, "Molten-metal Electrodes for Solid Oxide Fuel Cells," *Industrial & Engineering Chemistry Research*, Vol. 49, pp. 10237~10241.
- (11) Yun, U.-J., Jo, M.-J., Lee, J.-W., Lee, S.-B., Lim, T-H., Park, S.-J. and Song, R.-H., 2013, "Operating Characteristics of a Tubular Direct Carbon Fuel Cell Based on a General Anode Support Solid Oxide Fuel Cell," *Ind. Eng. Chem. Res.*, Vol. 52 (44), pp 15466~15471.
- (12) Nabae, Y., Pointon, K. D. and Irvine, J. T. S., 2008, "Electrochemical Oxidation of Solid Carbon in Hybrid DCFC with Solid Oxide and Molten Carbonate Binary Electrolyte," *Energy Environ Sci*, Vol. 1, pp 148~155.
- (13) Li, H., Liu, Q. and Li, Y., 2010, "A Carbon in Molten Carbonate Anode Model for a Direct Carbon Fuel Cell," *Electrochimica Acta*, Vol. 55, pp. 1958~1965.
- (14) Jia, L., Tian, Y., Liu, Q., Xia, C., Yu, J., Wang, Z., Zhao, Y. and Li, Y., 2010, "A Direct Carbon Fuel Cell with (Molten Carbonate)/(doped Ceria) Composite Electrolyte," *Journal of Power Sources*, Vol. 195, pp. 5581~5586.
- (15) Chien, A. C. and Chuang, S. S. C., 2011, "Effect of Gas Flow Rates and Boudouard Reactions on the Performance of Ni/YSZ Anode Supported Solid Oxide Fuel Cells with Solid Carbon Fuels," *J Power Sources* Vol. 196, pp. 4719–4723.
- (16) Deleebeeck, L. and Hansen, K. K., 2014, "Hybrid Direct Carbon Fuel Cells and their Reaction Mechanisms—a Review," *J Solid State Electrochem*, Vol. 18, pp. 861~882.
- (17) Cooper, J. F. and Selman, J. R., 2012, "Analysis of the Carbon Anode in Direct Carbon Conversion Fuel Cells," *Int. J. of Hydrogen Energy*, Vol. 37, pp. 19319~19328.
- (18) Varlamov, Y. D., Predtechenskii M. P. and Ulyankin, S. N., 2012, "Interrelation of Anode and Cathode Processes in Electrochemical Carbon Oxidation in a Fuel Cell with

SO-DCFC 적용을 위한 카본블랙-탄산염 혼합 매개체의 고온 반응 특성에 대한 연구 685

Molten Carbonate Electrolyte," *Journal of Engineering Thermophysics*, Vol. 21, pp. 16–27.

- (19) Janz, G. J., Allen, C. B., Bansal, N. P.; Murphy, R.M. and Tomkins, R.P.T., 1979, "Physical Properties Data Compilations Relevant to Energy Storage. II. Molten Salts: Data on Single and Multi-component Salt Systems," Report NSRDS-NBS-61(PT.2).
- (20) Rady, A. C., Giddey, S., Badwal, S. P. S., Ladewig, B. P. and Bhattacharya, S., 2012, "Review of Fuels for Direct Carbon Fuel Cells," *Energy & Fuels*, Vol. 26, pp. 1471~1488.
- (21) Li, X., Zhu Z., Marco, D. R., Bradley, J. and Dicks, A., 2010, "Evaluation of Raw Coals as Fuels for Direct

Carbon Fuel Cells," J Power Sources, Vol. 195 pp. 4051~4058.

- (22) Kapteijn, F., Peer, O. and Moulijn, J. A., 1986, "Kinetics of the Alkali Carbonate Catalysed Gasification of Carbon.
 1. CO₂ Gasification," *Fuel*, Vol. 65, pp. 1371~1378.
- (23) Mckee, D. W., 1982, "Gasification of Graphite in Carbon Dioxide and Water Vapor—the Catalytic Effects of Alkali Metal Salts," *Carbon*, Vol. 20, pp. 59~66.
- (24) Nagase, K., Shimodaira, T., Itoh, M. and Zheng, Y., 1999 "Kinetics and Mechanisms of the Reverse Boudouard Reaction over Metal Carbonates in Connection with the Reaction of Solid Carbon withmetal Carbonates," *Phys Chem Chem Phys* Vol. 1, pp. 5659~5664.