DOI QR코드

DOI QR Code

Dependence of Thermal and Electrochemical Properties of ceramic Coated Separators on the Ceramic Particle Size

알루미나 크기에 따른 세라믹 코팅 분리막의 열적 특성 및 전기화학적 특성

  • Park, Sun Min (Department of Materials science and engineering, Korea University) ;
  • Yu, Ho Jun (Kokam Co., R&D Center1) ;
  • Kim, Kwang Hyun (Kokam Co., R&D Center1) ;
  • Kang, Yun Chan (Department of Materials science and engineering, Korea University) ;
  • Cho, Won Il (Korea Institute of Science & Technology (KIST), Center for Energy Convergence)
  • Received : 2016.11.08
  • Accepted : 2017.03.14
  • Published : 2017.05.31

Abstract

Conventional lithium ion batteries suffer from notorious safety issues caused by inevitable lithium dendrite formation and proliferation during over/fast charging processes. The lithium dendrites or mechanical damage on the separator induce internal short circuit in LiB that generates extensive amount of heat within contacted electrode surfaces through the separator. During this heat generation, conventional polyolefin separators shrinks dramatically, and increasing short circuit pathway, that causes the battery to explode. To overcome this serious issue, ceramic coated separators are developed in commercial LiB to enhance thermal and mechanical stability. In this paper, various size(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm) of $Al_2O_3$ particles are coated using styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) binder on PE separator to investigate its thermal stability and electrochemical effect on LiB coin cell with NCM cathode and Li metal anode.

매우 좋은 에너지 저장장치인 리튬이차전지의 안전성은 전기화학반응이 일어나는 "양극/분리막(전해질)/음극"의 계에서 리튬이온전지의 분리막의 물리적 충격, 고온에 따른 손상에 기인하는 바가 크며, 특히, 폭발사고에서 분리막 손상에 의한 내부단락이 큰 영향을 끼친다. 고분자로 구성된 분리막의 열 안정성을 높이기 위해 세라믹이 얇게 코팅된 세라믹코팅 분리막이 최근 사용되고 있다. 폴리에틸렌계 분리막 위에 다양한 크기(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm)의 $Al_2O_3$ 입자와 styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) 바인더를 섞어 만든 슬러리를 코팅하여 열 안정성을 측정한 후, 이를 분리막으로 하는 삼성분계 양극과 리튬메탈 음극의 코인 셀을 제작하여, 전기화학적 특성 변화를 관찰하였다.

Keywords

References

  1. J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  2. J. B. Goodenough and Y. Kim, Chemistry of Materials, 22, 587 (2009).
  3. I. Uchida, H. Ishikawa, M. Mohamedi and M. Umeda, Journal of power sources, 119, 821 (2003).
  4. M.-S. Wu, P.-C. J. Chiang, J.-C. Lin and Y.-S. Jan, Electrochimica acta, 49, 1803 (2004). https://doi.org/10.1016/j.electacta.2003.12.012
  5. C. J. Orendorff, Electrochemical Society Interface, 21, 61 (2012).
  6. N. Alle and J. Lyngaae-Jorgensen, Rheologica Acta, 19, 94 (1980). https://doi.org/10.1007/BF01523860
  7. T. Kallel, V. Massardier-Nageotte, M. Jaziri, J. F. Gerard and B. Elleuch, Journal of applied polymer science, 90, 2475 (2003). https://doi.org/10.1002/app.12873
  8. J.-H. Park, W. Park, J. H. Kim, D. Ryoo, H. S. Kim, Y. U. Jeong, D.-W. Kim and S.-Y. Lee, Journal of Power Sources, 196, 7035 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.102
  9. K. J. Kim, J.-H. Kim, M.-S. Park, H. K. Kwon, H. Kim and Y.-J. Kim, Journal of Power Sources, 198, 298 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.086
  10. H.-S. Jeong, S. C. Hong and S.-Y. Lee, Journal of Membrane Science, 364, 177 (2010). https://doi.org/10.1016/j.memsci.2010.08.012
  11. C. Shi, P. Zhang, L. Chen, P. Yang and J. Zhao, Journal of Power Sources, 270, 547 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.142
  12. Z. Zhang, Y. Lai, Z. Zhang, K. Zhang and J. Li, Electrochimica Acta, 129, 55 (2014). https://doi.org/10.1016/j.electacta.2014.02.077
  13. S.-J. Gwon, J.-H. Choi, J.-Y. Sohn, S.-J. An, Y.-E. Ihm and Y.-C. Nho, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266, 3387 (2008). https://doi.org/10.1016/j.nimb.2008.05.017
  14. J.-P. Yen, C.-C. Chang, Y.-R. Lin, S.-T. Shen and J.-L. Hong, Journal of The Electrochemical Society, 160, A1811 (2013). https://doi.org/10.1149/2.083310jes
  15. M. He, L.-X. Yuan, W.-X. Zhang, X.-L. Hu and Y.-H. Huang, The Journal of Physical Chemistry C, 115, 15703 (2011). https://doi.org/10.1021/jp2043416
  16. J.Y. Song, Y.Y. Wang, C.C. Wan, Journal of The Electrochemical Society, 147, 3219 (2000) https://doi.org/10.1149/1.1393886
  17. S. S. Zhang, Journal of Power Sources, 164, 351 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.065
  18. G.-A. Nazri and G. Pistoia, Lithium batteries: science and technology, Springer Science & Business Media (2008).
  19. N. Sato and A. Yoshino, CMC, Tokyo (2009).
  20. F. Amalraj, M. Talianker, B. Markovsky, D. Sharon, L. Burlaka, G. Shafir, E. Zinigrad, O. Haik, D. Aurbach and J. Lampert, Journal of The Electrochemical Society, 160, A324 (2013). https://doi.org/10.1149/2.036304jes
  21. Park, M., Ra, B. H., Bae, J. Y., Kim, B. H., & Choi, W. K. Polymer Korea, 37, 22 (2013) https://doi.org/10.7317/pk.2013.37.1.22
  22. Abraham, K. M., Pasquariello, D. M., & Willstaedt, E. M. Journal of The Electrochemical Society, 145, 482 (1998). https://doi.org/10.1149/1.1838289