DOI QR코드

DOI QR Code

A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature: As an Anode Media of SO-DCFC

SO-DCFC 적용을 위한 카본블랙-탄산염 혼합 매개체의 고온 반응 특성에 대한 연구

  • Received : 2014.03.03
  • Accepted : 2014.06.19
  • Published : 2014.08.01

Abstract

A direct carbon fuel cell (DCFC) generates electricity directly by converting the chemical energy in coal. In particular, a DCFC system with a solid oxide electrolyte and molten carbonate anode media has been proposed by SRI. In this system, however, there are conflicting effects of temperature, which enhances the ion conductivity of the solid electrolyte and reactivity at the electrodes while causing a stability problem for the anode media. In this study, the effect of temperature on the stability of a carbon-carbonate mixture was investigated experimentally. TGA analysis was conducted under either nitrogen or carbon dioxide ambient for $Li_2CO_3$, $K_2CO_3$, and their mixtures with carbon black. The composition of the exit gas was also monitored during temperature elevation. A simplified reaction model was suggested by considering the decomposition of carbonates and the catalyzed Boudouard reactions. The suggested model could well explain both the measured weight loss of the mixture and the gas formation from it.

직접 탄소 연료전지(DCFC)는 석탄을 비롯한 탄소계 연료의 화학에너지를 직접 전기로 변환시킨다. 특히, 약 10 년 전에 고체산화물 전해질을 사용하고 연료극 매개체로 용융탄산염을 사용하는 고성능 직접탄소 연료전지 시스템이 제안되었다. 이 시스템의 경우, 운전 온도가 증가할수록 고체산화물 전해질의 이온 전도도가 향상되고 전기화학 반응이 활성화되어 성능이 향상되나, 연료극 매개체의 화학적인 안정성 문제발생이 우려된다. 본 연구에서는 탄소-탄산염 혼합 매개체의 고온 안정성을 이해하기 위한 일련의 실험을 수행하였다. 질소 또는 이산화탄소 분위기에서 카본블랙과 혼합된 $Li_2CO_3$$K_2CO_3$의 TGA 분석을 수행하였으며, 가열 과정에서 시료로부터 생성되는 가스 성분을 분석하였다. 이러한 결과를 해석하기 위하여, 탄산염의 열분해와 탄산염 등에 의하여 가속화되는 탄소 가스화 반응을 고려한 화학반응 모델을 제시하였으며, 실험 결과로부터 구한 매개체의 중량 손실과 가스 생성을 정성적으로 설명하였다.

Keywords

References

  1. Edison, T. A., 1891, US Patent No. 460,122.
  2. Jacques, W. W., 1896, US Patent No. 555,511.
  3. Wolk, R. H., Lux, S., Gelber, S. and Holcomb, R. H., 2007, "Direct Carbon Fuel Cells: Converting Waste to Electricity," Report ERDC/CERL TR-07-32, p. 54.
  4. Cao, D., Sun, Y. and Wang, G.., 2007, "Direct Carbon Fuel Cell: Fundamentals and Recent Developments," J. of Power Source, Vol 167, pp. 250-257. https://doi.org/10.1016/j.jpowsour.2007.02.034
  5. Giddey, S., Badwal, S. P. S., Kulkarni, A. and Munnings, C., 2012, "A Comprehensive Review of Direct Carbon Fuel Cell Technology," Progress in Energy and Combustion Science, Vol. 38, pp. 360-399. https://doi.org/10.1016/j.pecs.2012.01.003
  6. Yentekakis, I. V., Debenedetti, P. G. and Costa, B., 1989, "A Novel Fused Metal Anode Solid Electrolyte Fuel-cell for Direct Coal-gasification-a Steady-state Model," Industrial & Engineering Chemistry Research, Vol 28, pp. 1414-1424. https://doi.org/10.1021/ie00093a022
  7. Balachov, I. I., Dubois, L. H., Hornbostel, M. D. and Lipilin, A. S., 2005, Presented in Fuel Cell Seminar, Direct Carbon Fuel Cell Workshop, Palm Springs, CA, USA, , Proceedings online:http://www.fuelcellseminar.com/pdf/Direct_Carbon_Fuel_Cell_Workshop/Balachov_Iouri.pdf.
  8. Pointon, K., Lakeman, B., Irvine, J., Bradley, J. and Jain, S., 2006, "The Development of a Carbon-air Semi Fuel Cell," Journal of Power Sources, Vol. 162, pp. 750-756. https://doi.org/10.1016/j.jpowsour.2005.07.023
  9. McPhee, W. A. G.., Boucher, M., Stuart, J., Parnas, R. S., Koslowske, M., Tao, T. and Wilhite, B. A., 2009, "Demonstration of a Liquid-tin Anode Solid-oxide Fuel Cell (LTA-SOFC) Operating from Biodiesel Fuel," Energy & Fuels, Vol. 23, pp. 5036-5041. https://doi.org/10.1021/ef9003413
  10. Jayakumar, A., Vohs, J. M. and Gorte, R. J., 2010, "Molten-metal Electrodes for Solid Oxide Fuel Cells," Industrial & Engineering Chemistry Research, Vol. 49, pp. 10237-10241. https://doi.org/10.1021/ie100457t
  11. Yun, U.-J., Jo, M.-J., Lee, J.-W., Lee, S.-B., Lim, T-H., Park, S.-J. and Song, R.-H., 2013, "Operating Characteristics of a Tubular Direct Carbon Fuel Cell Based on a General Anode Support Solid Oxide Fuel Cell," Ind. Eng. Chem. Res., Vol. 52 (44), pp 15466-15471. https://doi.org/10.1021/ie401053w
  12. Nabae, Y., Pointon, K. D. and Irvine, J. T. S., 2008, "Electrochemical Oxidation of Solid Carbon in Hybrid DCFC with Solid Oxide and Molten Carbonate Binary Electrolyte," Energy Environ Sci, Vol. 1, pp 148-155. https://doi.org/10.1039/b804785e
  13. Li, H., Liu, Q. and Li, Y., 2010, "A Carbon in Molten Carbonate Anode Model for a Direct Carbon Fuel Cell," Electrochimica Acta, Vol. 55, pp. 1958-1965. https://doi.org/10.1016/j.electacta.2009.11.015
  14. Jia, L., Tian, Y., Liu, Q., Xia, C., Yu, J., Wang, Z., Zhao, Y. and Li, Y., 2010, "A Direct Carbon Fuel Cell with (Molten Carbonate)/(doped Ceria) Composite Electrolyte," Journal of Power Sources, Vol. 195, pp. 5581-5586. https://doi.org/10.1016/j.jpowsour.2010.03.016
  15. Chien, A. C. and Chuang, S. S. C., 2011, "Effect of Gas Flow Rates and Boudouard Reactions on the Performance of Ni/YSZ Anode Supported Solid Oxide Fuel Cells with Solid Carbon Fuels," J Power Sources Vol. 196, pp. 4719-4723. https://doi.org/10.1016/j.jpowsour.2011.01.033
  16. Deleebeeck, L. and Hansen, K. K., 2014, "Hybrid Direct Carbon Fuel Cells and their Reaction Mechanisms-a Review," J Solid State Electrochem, Vol. 18, pp. 861-882. https://doi.org/10.1007/s10008-013-2258-1
  17. Cooper, J. F. and Selman, J. R., 2012, "Analysis of the Carbon Anode in Direct Carbon Conversion Fuel Cells," Int. J. of Hydrogen Energy, Vol. 37, pp. 19319-19328. https://doi.org/10.1016/j.ijhydene.2012.03.095
  18. Varlamov, Y. D., Predtechenskii M. P. and Ulyankin, S. N., 2012, "Interrelation of Anode and Cathode Processes in Electrochemical Carbon Oxidation in a Fuel Cell with Molten Carbonate Electrolyte," Journal of Engineering Thermophysics, Vol. 21, pp. 16-27. https://doi.org/10.1134/S181023281201002X
  19. Janz, G. J., Allen, C. B., Bansal, N. P.; Murphy, R.M. and Tomkins, R.P.T., 1979, "Physical Properties Data Compilations Relevant to Energy Storage. II. Molten Salts: Data on Single and Multi-component Salt Systems," Report NSRDS-NBS-61(PT.2).
  20. Rady, A. C., Giddey, S., Badwal, S. P. S., Ladewig, B. P. and Bhattacharya, S., 2012, "Review of Fuels for Direct Carbon Fuel Cells," Energy & Fuels, Vol. 26, pp. 1471-1488. https://doi.org/10.1021/ef201694y
  21. Li, X., Zhu Z., Marco, D. R., Bradley, J. and Dicks, A., 2010, "Evaluation of Raw Coals as Fuels for Direct Carbon Fuel Cells," J Power Sources, Vol. 195 pp. 4051-4058. https://doi.org/10.1016/j.jpowsour.2010.01.048
  22. Kapteijn, F., Peer, O. and Moulijn, J. A., 1986, "Kinetics of the Alkali Carbonate Catalysed Gasification of Carbon. 1. $CO_2$ Gasification," Fuel, Vol. 65, pp. 1371-1378. https://doi.org/10.1016/0016-2361(86)90107-9
  23. Mckee, D. W., 1982, "Gasification of Graphite in Carbon Dioxide and Water Vapor-the Catalytic Effects of Alkali Metal Salts," Carbon, Vol. 20, pp. 59-66. https://doi.org/10.1016/0008-6223(82)90075-6
  24. Nagase, K., Shimodaira, T., Itoh, M. and Zheng, Y., 1999 "Kinetics and Mechanisms of the Reverse Boudouard Reaction over Metal Carbonates in Connection with the Reaction of Solid Carbon withmetal Carbonates," Phys Chem Chem Phys Vol. 1, pp. 5659-5664. https://doi.org/10.1039/a906687j