DOI QR코드

DOI QR Code

Synthesis and Electrochemical Performance of Ni-rich NCM Cathode Materials for Lithium-Ion Batteries

리튬이온전지 양극활물질 Ni-rich NCM의 합성과 전기화학적 특성

  • Kim, Soo Yeon (Department of Chemical Engineering, Dong-A University) ;
  • Choi, Seung-Hyun (Department of Chemical Engineering, Dong-A University) ;
  • Lee, Eun Joo (Department of Chemical Engineering, Dong-A University) ;
  • Kim, Jeom-Soo (Department of Chemical Engineering, Dong-A University)
  • 김수연 (동아대학교 화학공학과) ;
  • 최승현 (동아대학교 화학공학과) ;
  • 이은주 (동아대학교 화학공학과) ;
  • 김점수 (동아대학교 화학공학과)
  • Received : 2017.05.31
  • Accepted : 2017.11.22
  • Published : 2017.11.30

Abstract

Layered Ni-rich NCM cathode materials $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$) have advantages of high energy density and cost competitive over $LiCoO_2$. The discharge capacity of NCM increases proportionally to the Ni contents. However, there is a problem that it is difficult to realize the stable electrochemical performance due to cation mixing. In this study, synthesis conditions for the layered Ni-rich NCMs are investigated to achieve deliver the ones having good electrochemical performances. Synthesis parameters are atmosphere, lithium source, synthesis time, synthesis temperature and Li/M (M=transition metal) ratio. The degree of cation mixing gets worse as the Ni content is increased from $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6) to $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8). It is confirmed that higher level of cation mixing affects negatively on the electrochemical performance of NCMs. Optimum synthesis conditions are explored for NCMx (x=6, 7, 8) in order to reduce the cation mixing. Under optimized conditions for three representative NCMx, a high initial discharge capacity and a good cycle life are obtained for $180mAh{\cdot}g^{-1}$, 96.2% (50 cycle) in NCM6, $187mAh{\cdot}g^{-1}$, 94.7% (50 cycle) in NCM7, and $201mAh{\cdot}g^{-1}$, 92.7% (50 cycle) in NCM8, respectively.

층상구조의 Ni-rich NCM계 양극활물질 $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$)은 $LiCoO_2$ 대비 높은 에너지밀도와 가격 경쟁력의 장점을 가진다. Ni 함량에 비례하여 가역 방전용량이 증가하는 장점이 있는 반면, 합성 중에 발생하는 양이온 혼합으로 인해 안정적인 전기화학성능을 구현하기 어려운 문제가 있다. 본 연구에서는 합성 분위기, 리튬 원료물질, 합성 시간, 합성 온도, Li/M (M=transition metal) 비율 등의 다양한 합성조건을 변수로 하여 Ni 함량 증가에 따라 최적의 층상구조 Ni-rich NCM을 각각 합성하고 이에 대한 전기화학성능을 보고하였다. $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6)을 기준으로 Ni 함량이 증가한 $Li[Ni_{0.7}Co_{0.15}Mn_{0.15}]O_2$ (NCM7)와 $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8)의 합성시 전이금속 중 Ni의 비율이 증가함에 따라 양이온 혼합이 증가하는 것이 관찰되었고, 이는 전기화학 성능에 부정적인 영향을 끼치는 것으로 확인되었다. Ni 비율별 NCM에 대한 연구결과 비율 내확인한 최적의 조건에서 NCM6은 $180mAh{\cdot}g^{-1}$, 96.2% (50회), NCM7은 $187mAh{\cdot}g^{-1}$, 94.7% (50회), NCM8은 $201mAh{\cdot}g^{-1}$, 92.7% (50회)의 초기 방전용량 및 수명평가 후 용량유지율 값을 각각 구현하였다.

Keywords

References

  1. J. B. Goodenough, Y. Kim, 'Challenges for Rechargeable Li Batteries' Chem. Mater., 22, 587 (2009).
  2. J. Tarascon, M. Armand, 'Issues and challenges facing rechargeable lithium batteries' Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  3. B. Xu, D. Qian, Z. Wang, Y. S. Meng, 'Recent progress in cathode materials research for advanced lithium ion batteries' Mater. Sci. Eng., R 73, 51 (2012). https://doi.org/10.1016/j.mser.2012.05.003
  4. T. Kim, J. Park, S. K. Chang, S. Choi, J. H. Ryu, H. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase' Adv. Energy Mater., 2, 860 (2012). https://doi.org/10.1002/aenm.201200028
  5. J. Xiao, N. A. Chernova, M. S. Whittingham, 'Influence of Manganese Content on the Performance of $LiNi_{0.9-y}Mn_yCo_{0.1}O_2(0.45{\leq}y{\leq}0.60)$ as a Cathode Material for Li-Ion Batteries' Chem. Mater., 22, 1180 (2009).
  6. K.-S. Lee, S.-T. Myung, K. Amine, H. Yashiro, Y.-K. Sun, 'Structural and Electrochemical Properties of Layered $Li[Ni_{1-2x}Co_xMn_x]O_2$ (x = 0.1 - 0.3)Positive Electrode Materials for Li-Ion Batteries' J. Electrochem. Soc., 154, A971 (2007). https://doi.org/10.1149/1.2769831
  7. H.-J. Noh, S. Youn, C. S. Yoon, Y.-K. Sun, 'Comparison of the structural and electrochemical properties of layered $Li[Ni_xCo_yMn_z]O_2$ (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries' J. Power Sources, 233, 121 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063
  8. W. Liu, P. Oh, X. Liu, M. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, 'Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries' Angew. Chem. Int. Ed., 54, 4440 (2015). https://doi.org/10.1002/anie.201409262
  9. Z. Huang, J. Gao, X. He, J. Li, C. Jiang, 'Well-ordered spherical $LiNi_xCo_{(1-2x)}Mn_xO_2$ cathode materials synthesized from cobolt concentration-gradient precursors' J. Power Sources., 202, 284 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.143
  10. K. Lee, K. Kim, 'Electrochemical and Structural Characterization of $LiNi_{1-y}Co_yO_2(0{\leq}y{\leq}0.2)$ Positive Electrodes during Initial Cycling' J. Electrochem. Soc., 147, 1709 (2000). https://doi.org/10.1149/1.1393422
  11. X. Zhang, W.J. Jiang, A. Mauger, Qilu, F. Gendron, C.M. Julien, 'Minimization of the cation mixing in $Li_{1+x}(NMC)_{1-x}O_2$ as cathode material' J. Power Sources, 195, 1292 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.029
  12. H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, J. Yamaki, 'Characterization and cathode performance of $Li_{1-x}Ni_{1+x}O_2$ prepared with the excess lithium method' Solid State Ionics, 80, 261 (1995). https://doi.org/10.1016/0167-2738(95)00144-U
  13. Chaochao Fu, Guangshe Li, Dong Luo, Qi Li, Jianming Fan, and Liping Li, 'Nickel-Rich Layered Microspheres Cathodes: Lithium/Nickel Disordering and Electrochemical Performance' ACS Appl. Mater. Interfaces., 6, 15822 (2014). https://doi.org/10.1021/am5030726
  14. W. Li, J. N. Reimers, and J. R. Dahn, 'In situ x-ray diffraction and electrochemical studies of $Li_{1-x}NiO_2$' Solid State Ionics., 67, 123 (1993). https://doi.org/10.1016/0167-2738(93)90317-V
  15. G. -W. Yoo, H. J. Jeon, and J. -T. Son, 'Effects of Calcinations Temperature on the Electrochemical Properties of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ Lithium-ion Cathode Materials' J. Korean Electrochem. Soc., 16, 59 (2013). https://doi.org/10.5229/JKES.2013.16.2.59
  16. J. K. Ngala, N. A. Chernova, M. Ma, M. Mamak, P. Y. Zavalij, M. S. Whittingham, 'The synthesis, characterization and electrochemical behavior of the layered $LiNi_{0.4}Mn_{0.4}Co_{0.2}O_2$ compound' J. Mater. Chem., 14, 214 (2004). https://doi.org/10.1039/b309834f
  17. M. S. Whittingham, 'Lithium Batteries and Cathode Materials' Chem. Rev., 104, 4271 (2004). https://doi.org/10.1021/cr020731c