• Title/Summary/Keyword: 양생 온도

Search Result 355, Processing Time 0.02 seconds

Research on Strength Development of High PFA Concrete (PFA 함유량이 높은 콘크리트의 강도발현에 관한 연구)

  • 이진용
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.126-135
    • /
    • 1995
  • The strength development of PFA concretes were invest~gated in this study. The work undertaken was divided into two parts which considered both the influence of PFA replacement level up to 45% and the effect of cement type at the high PRA leveI(45%). The additiorlal cement considered included a rapdhardemng portland ccnlent. The full range of concrete struc tural grades were studied anti ciight cu~ing contlltiorls covering those 11:ied 111 practlce were examined. The early strength retluced wit11 increasing PFA content. However, post 28days, the reverse was observed. It was posslhle through the use of rapid hardening portland cement at the high PFA level to achieve similar early strength to OPC concrete, with the same benefits noted above also being obtained post 28 days. The compressive strength uf hlgh PYA content concrt:tes at hgh temperature m s found to be higher than the ccmtrol at all ages hoth in water and alr. The same trends were observed at low t.ernperature in air. However, the reverse occur-ed at the low temperature In water.

Analysis of Chloride ion Penetration of Marine Concrete Structure (해양 콘크리트 구조물의 염소이온 침투해석)

  • 한상훈;박우선;김동현
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.71-79
    • /
    • 2003
  • The estimation functions were proposed for calculating diffusion coefficient, chloride binding, and evaporable water. The program estimating chloride ion penetration was developed on the basis of these functions and the effects of humidity, curing temperature, water-cement ratio, and $C_3$A on chloride penetration were analyzed. The relative humidity increases the depth of chloride ion penetration and the trend becomes greater with aging. On the contrary, the influence of curing temperature on chloride ion penetration decreases with aging. By the way, the rise of $C_3$A in cement increases total chloride concentration on the surface as the bound chloride concentration increases but it decreases total chloride concentration on the inner part as the diffusion velocity of free chloride decreases. The fall of water-cement ratio decreases the chloride penetration depth rapidly. Therefore, the reduction of water-cement ratio may be the most effective method for reducing of the steel corrosion by chloride penetration.

Experimental Study of Leaching Phenomena of Cs-137 From a Cement Matrix Generated at PWR Plant (가압 경수로에서 생성된 시멘트 고화체로부터 Cs-137의 용출 현상의 실험적 연구)

  • Doh, Jeong-Yeul;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.2
    • /
    • pp.91-103
    • /
    • 1986
  • Experimental study for the leaching behavior of Cs-137 was carried out using the simulated evaporator bottom product of PWR plant. The method of leach test proposed by the IAEA was partially modified using ANS method. The effect of various factors, i.e., sampling method, curing temperature, curing time, leachant temperature, vermiculite addition and volume-to-surface ratio, was considered in this experiment. Diffusion model in semi-infinite slab was in a good agreement with the data obtained from 4-weeks cured specimens. The effective diffusion coefficient of the specimens which were cured at the temperature of $24^{\circ}C$ for 4 weeks was found to be $1.20{\sim}1.47{\times}10^{-11}cm^2/sec$. With the experimentally obtained diffusion coefficient ($1.47{\times}10^{-11}cm^2/sec$), long-term prediction for the leaching of Cs-137 was carried out using finite-slab approximation. The estimated fraction of Cs-137 which remains in the environment is found to be less than 0.25 percent of initial amount after 100 years. About 25 years after the beginning of leaching, its fractional amount in the environment reachs the maximum value, 0.66 percent of initial amount.

  • PDF

Lining of Reinforced Spun Concrete Pipes using Polymer-Modified Mortars (폴리머 시멘트 모르타르를 이용한 원심력 철근콘크리트관의 라이닝)

  • 조영국
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.406-413
    • /
    • 2001
  • Up to this day, reinforced spun concrete pipes have been widely used as drain pipes. However, many reinforced spun concrete pipes are exposed to the deteriorated environment such as freezing-thawing damage and chemical attack by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar using polymer dispersions as cement modifier on the development in durability of reinforced spun concrete pipe. The polymer-modified mortars were prepared with various polymer types and polymer-cement ratios, and tested for compressive and flexural strengths, acid, freezing-thawing, and heat resistances. And then, the reinforced spun concrete pipe product lined by polymer-modified mortars was tested for adhesion in tension and surface conditions according to curing temperatures in the field. From the test results, it is apparent that the polymer-modified mortars have good mechanical properties and durability as a lining material. In practice, all polymers can be used as lining the materials for reinforced spun concrete pipe, and types of polymer, and polymer-cement ratio and curing conditions are controlled for a good lining product.

Strength Properties of Mortar According to Types of Binders for Reducing Curing Process of Concrete Secondary Products for Reduction CO2 (CO2 절감을 위한 콘크리트 2차제품 양생단계저감용 결합재 종류에 따른 모르타르 강도특성)

  • Kim, Ha-Seog;Baek, Dae-Hyun;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.37-46
    • /
    • 2014
  • Carbon dioxide generated from construction materials and construction material industry among the fields of construction is approximately 67 million tons. It is about 30% of the carbon dioxide generated in the fields of construction. In order to reduce carbon dioxide in the fields of construction, it is necessary to control the use of fossil fuel consumed and decrease carbon emission by reducing the secondary and tertiary curing generating carbon dioxide in construction material industry. Therefore, this study manufactured mortar by having cement as the Plain and substituting three binding materials up to 50% and then adopted different curing methods to analyze congelation and strength characteristics. Test results for strength property by changing binding materials showed that specimens with blast furnace slag, CSA 15% and CAMC 5% resulted in positive effect for strength.

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Freezing at Early Age (초기재령에서 동결을 받은 고로슬래그 콘크리트의 강도발현특성에 관한 실험적 연구)

  • Choi, Sung-Woo;Ban, Seong-Soo;Ryu, Deuk-Hyun;Choi, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2003
  • Recently, to consider financial and constructive aspect usage of Admixture such as Blast-Furnace Slag and Fly-Ash, are increased. Also the use of cold-weather-concrete is increased. Blast-Furnace Slag, a by-product of steel industry, have many advantage to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to frost damage for the cause of early age curing. The factors of this experience to give early frost damaged were Freezing temperature(-1, -10, $-15^{\circ}C$), Early curing age(0, 12, 24, 48hour), Freezing times(0, 12, 24, 48hour). According to this study, if early curing is carried out before haying frost damage, the strength of concrete used admixture, subjected to frost damage, is recovered. And that properties are considered, the effect of using admixture like blast-furnace-slag, is very high

Estimation of Compressive Strength of the Fly Ash Substitution Cement Mortar by Equivalent age (등가재령 방법에 의한 플라이애시를 치환한 시멘트 모르타르의 강도 증진 해석)

  • Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.121-127
    • /
    • 2012
  • This paper is to present the strength estimation of the cement mortar incorporating 20% of fly ash by equivalent age method. ASTM C 1074 was applied to achieve apparent activation energy($E_a$). Cement mortar was cured at the temperature of $5^{\circ}C$, $20^{\circ}C$ and $35^{\circ}C$ respectively to measure the setting time and compressive strength at designed age. According to test results, it is found that an increase in curing temperature resulted in an acceleration of setting time. $E_a$ was achieved to 34.75 KJ/mol. It was also found that by estimating strength development with Plowman and Gompertz model, good agreement between calculated value and measured one was achieved.

  • PDF

Temperature History of Concrete Corresponding to Various Bubble Sheets Layer and Curing Temperature (양생온도 변화 및 버블시트 두께변화에 따른 콘크리트의 온도이력특성)

  • Hong, Seak-Min;Baek, Dae-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.21-25
    • /
    • 2008
  • In this paper, the temperature history and the strength development of concrete corresponded to various bubble sheets layer and curing temperature. Based on the results, In case of the test temperature of -5℃, concrete subject in the exposure condition, result in a frost damage at initial stage by a fall of below zero temperature. In case of the combination of PE film and non woven fabric was after 36 hour, and combination of bubble sheet over double, a tremendous insulating effect of bubble sheet over double is confirmed due to the temperature of concrete fall of below zero temperature after 60 hours. Meanwhile, regarding the -15℃ of temperature, special measure for insulation curing is necessary to secure stability against early frost damage because frost damage was not affected by the lapping thickness of bubble sheet subjected to severe cold weather condition.

  • PDF

The Effect of Heat Curing Methods on the Temperature History of the Fly Ash Concrete Subjected to Extremely Low Temperature (복합보온양생 방법이 극저온 조건하 플라이애시 치환 콘크리트의 온도이력에 미치는 영향)

  • Han, Min-Cheol;Son, Ho-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • In this study, temperature profile of the fly ash concrete were studied in accordance with the change of heating curing method combination for the slab concrete in order to develop efficient protection method of the concrete subjected to $-20^{\circ}C$. The slab concretes with the size of $1200mm{\times}600mm{\times}200mm$ were fabricated with W/B of 50% and exposed to $-20^{\circ}C$ for 7 days. Five different combinations of heat curing methods were applied to the slab concrete specimen; two combinations of heat supplying by electrical heater and surface heat insulation material such as polyethylene film and quadrupled layer bubble sheet based on heat enclosure installment; three combinations of heating coil embedment and surface heat insulation materials such as polyethylene film, sawdust and quadrupled layer bubble sheet based on heat enclosure installment. Test results showed that by applying both heating coil and bubble sheet and heat enclosure, the concrete exposed to $-20^{\circ}C$ can be effectively protected from early-age frost damage.

  • PDF

Strength Development of Sulfur-Polymer-Based Concrete Surface Protecting Agents Depending on Curing Condition and Hazard Assessment of Sulfur Polymers (유황폴리머를 활용한 콘크리트 표면보호재의 양생조건에 따른 강도 평가 및 유황폴리머의 유해성 평가)

  • Lee, Byung-Jae;Lee, Eue-Sung;Kim, Seung-Gu;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.139-146
    • /
    • 2015
  • The amount of by-product from sulphur increases in domestic industrial facilities. However, the amount of its consumption is limited so that the amount of unused sulphur continues to increase. Therefore, in this study, the use sulfur polymer as the concrete surface protecting material was conducted. The compressive strength showed that as the substitution ratio of filler increased up to 40%, the compressive strength also increased. A high compressive strength was shown at the curing temperature of $40^{\circ}C$ (SS, FA) and $60^{\circ}C$ (OPC) according to the type of filler. The difference of compressive strength between air dry curing and water curing was insignificant so that there was no significant influence of moisture during curing process. The evaluation result of bond strength showed that the highest bond strength was shown at the air-dry condition of $40^{\circ}C$ regardless of type of filler. Bonding didn't occur properly during water curing in comparison to air dry curing. Also, in case of the specimen cured at $60^{\circ}C$, discoloration and hair cracks appeared due to the influence of temperature, and the highest bond strength was shown at the substitution ratio of 20% (SS, FA) and 30% (OPC) according to the type of filler. The releasing test result of harmful substance showed that no harmful substance was released, so there is no harmfulness in the surface protecting material using sulfur polymer. As a conclusion drawn in this study, it is most appropriate to substitute silica by approximately 20%, mix and cure at the air-dry condition of $40^{\circ}C$ in order to use sulfur polymer as the surface protecting material.