DOI QR코드

DOI QR Code

Strength Development of Sulfur-Polymer-Based Concrete Surface Protecting Agents Depending on Curing Condition and Hazard Assessment of Sulfur Polymers

유황폴리머를 활용한 콘크리트 표면보호재의 양생조건에 따른 강도 평가 및 유황폴리머의 유해성 평가

  • 이병재 ((주)제이엔티아이엔씨 기술연구소) ;
  • 이의성 (충남대학교 토목공학과) ;
  • 김성구 (충남대학교 토목공학과) ;
  • 김윤용 (충남대학교 토목공학과)
  • Received : 2014.08.13
  • Accepted : 2014.10.02
  • Published : 2015.01.30

Abstract

The amount of by-product from sulphur increases in domestic industrial facilities. However, the amount of its consumption is limited so that the amount of unused sulphur continues to increase. Therefore, in this study, the use sulfur polymer as the concrete surface protecting material was conducted. The compressive strength showed that as the substitution ratio of filler increased up to 40%, the compressive strength also increased. A high compressive strength was shown at the curing temperature of $40^{\circ}C$ (SS, FA) and $60^{\circ}C$ (OPC) according to the type of filler. The difference of compressive strength between air dry curing and water curing was insignificant so that there was no significant influence of moisture during curing process. The evaluation result of bond strength showed that the highest bond strength was shown at the air-dry condition of $40^{\circ}C$ regardless of type of filler. Bonding didn't occur properly during water curing in comparison to air dry curing. Also, in case of the specimen cured at $60^{\circ}C$, discoloration and hair cracks appeared due to the influence of temperature, and the highest bond strength was shown at the substitution ratio of 20% (SS, FA) and 30% (OPC) according to the type of filler. The releasing test result of harmful substance showed that no harmful substance was released, so there is no harmfulness in the surface protecting material using sulfur polymer. As a conclusion drawn in this study, it is most appropriate to substitute silica by approximately 20%, mix and cure at the air-dry condition of $40^{\circ}C$ in order to use sulfur polymer as the surface protecting material.

콘크리트의 화학적 침식은 콘크리트 구조물의 내구성 감소로 이어져 문제가 되고 있다. 현재 사용되고 있는 콘크리트 표면보호재의 내구수명이 짧아 유지보수에 많은 비용과 노력이 요구되고 있다. 한편 국내 산업시설에서 유황의 부산량이 늘어나고 있으나, 소비량이 한정되어 있어 잉여유황이 증가하고 있다. 따라서 본 연구에서는 유황폴리머를 콘크리트의 표면보호재로 사용하기 위한 연구로써 채움재의 종류 및 양생조건에 따른 역학적 특성을 평가하였고, 유황폴리머에 대한 유해성을 평가하였다. 압축강도 평가 결과 채움재의 치환비율이 40%까지 증가할수록 압축강도 또한 증가하였으며, 채움재의 종류에 따라 양생온도 $40^{\circ}C$ (SS, FA)와 $60^{\circ}C$ (OPC)에서 높은 압축강도를 나타냈다. 기건양생과 수중양생의 압축강도 차는 미미한 것으로 나타나 양생 시 수분에 의한 영향은 크지 않은 것으로 나타났다. 부착강도 평가 결과 채움재의 종류와 무관하게 기건상태 $40^{\circ}C$에서 가장 높은 부착강도를 나타냈으며, 수중양생시 기건양생에 비하여 부착이 되지 않는 것으로 나타났다. 또한 $60^{\circ}C$에서 양생한 공시체의 경우 온도에 영향을 받아 변색 및 잔갈림 등이 나타냈으며, 채움재의 종류에 따라 치환 비율 20% (SS, FA) 30% (OPC)에서 가장 높은 부착강도를 나타냈다. 유해물질 용출시험 결과, 유해물질이 용출되지 않아 유황폴리머를 활용한 표면보호재의 유해성이 없는 것으로 판단된다. 본 연구범위에서 검토한 결과, 유황폴리머를 표면보호재로 활용하기 위해서는 규사를 20% 정도 치환하여 배합하고 $40^{\circ}C$의 기건상태에서 양생하는 것이 가장 적절한 것으로 판단된다.

Keywords

References

  1. Abdel-Mohsen, O., Mohamed, Maisa El Gamal (2009), Hydro-mechanical behavior of a newly developed sulfur polymer concrete, Cement and Concrete Composites, 31(3), 186-194. https://doi.org/10.1016/j.cemconcomp.2008.12.006
  2. Bea, S. G., Gwon, S. W., Kim, S. W., Cha, S. W. (2014), Physical Properties of Sulfur Concrete with Modified Sulfur Binder, Journal of the Korean Society of Civil Engineers, 34(3), 763-771. https://doi.org/10.12652/Ksce.2014.34.3.0763
  3. Hyun, J. H., Bang, J. W., Seo, U. C., Kim, Y. H., Park, J. M., Kim, Y. Y. (2012), The experimental study on the strength properties of concrete using Sulfur Polymer, Journal of Korea Society of Civil Engineers, 2012(10), 2437-2440.
  4. Jung, B. Y., Lee, S. S., Song, H. Y. (2014), Modified Sulfur Distribution and Compressive Strength Characteristics of Modified Sulfur Mortar Based on the Mixing Method and Curing Condition, Journal of the Korea Institute of Building Construction, 14(1), 61-67. https://doi.org/10.5345/JKIBC.2014.14.1.061
  5. Kalb, P. D., Heiser III, J. H., Colombo, P. (1991), Modified sulfur cement encapsulation of mixed waste contaminated incinerator fly ash, Waste Management, 11(3), 147-153 https://doi.org/10.1016/0956-053X(91)90091-I
  6. KIGAM (2010), Resources overview, MiCI (Mineral Conmmodity Information).
  7. Lee, B. J., Lee, E. S., Chung, W. J., Kim, Y. Y. (2014), Efficiency Test for Surface Protecting Agents for the Chemical Resistance of Concrete Structures using Sulfur Polymers, Magazine of the Korea Institute for Structural Maintenance and Inspection, 18(5). https://doi.org/10.11112/jksmi.2014.18.5.001
  8. Mariusz Ksi ek (2011), The experimental and innovative research on usability of sulphur polymer composite for corrosion protection of reinforcing steel and concrete, Composites Part B: Engineering, 42(5), 1084-1096. https://doi.org/10.1016/j.compositesb.2011.03.022
  9. Milica, M., Vlahovi , Predrag, B., Jovani , Sanja, P., Martinovi , Tamara, Boljanac, Tatjana, D., Volkov-Husovi (2013), Quantitative evaluation of sulfur-polymer matrix composite quality, Composites Part B: Engineering, 44(1), 458-466. https://doi.org/10.1016/j.compositesb.2012.04.005
  10. Ministry of environment (2007), Test methods of waste processing.
  11. Nam, Y. H., Chung, Y. J., Jang, S. H., An, Y. K. (2006), An Experimental Evaluation on Performance of Surface Protector for Concrete Structures, Journal of the Korea Institute for Structural Maintenance and Inspection, 10(5), 157-162.
  12. Park, S. B., Hong, C. H., Kim, S. C., Kim, K. H. (2007), Experimental Study on Development of Artificial Fishing Reefs Using Environment-Friendly Sulfur Concrete, Journal of ocean engineering and technology, 21(3), 58-64.
  13. Yahia Abdel-Jawad, Muhammad Al-Qudah (1994), The combined effect of water and temperature on the strength of sulfur concrete, Cement and Concrete Research, 24(1), 165-175. https://doi.org/10.1016/0008-8846(94)90098-1
  14. Yoon, J. H. (2006), An Experimetal Study on the Durability of Sulfur Concrete, Journal of the Architectural Institute of Korea Structure & Construction, 22(6), 95-102.