DOI QR코드

DOI QR Code

Strength Properties of Mortar According to Types of Binders for Reducing Curing Process of Concrete Secondary Products for Reduction CO2

CO2 절감을 위한 콘크리트 2차제품 양생단계저감용 결합재 종류에 따른 모르타르 강도특성

  • Kim, Ha-Seog (Advanced Building Research Division Building Research Department, Korea Institute Construction Technology) ;
  • Baek, Dae-Hyun (Advanced Building Research Division Building Research Department, Korea Institute Construction Technology) ;
  • Lee, Sea-Hyun (Advanced Building Research Division Building Research Department, Korea Institute Construction Technology)
  • 김하석 (한국건설기술연구원 공공건축연구본부) ;
  • 백대현 (한국건설기술연구원 공공건축연구본부) ;
  • 이세현 (한국건설기술연구원 공공건축연구본부)
  • Received : 2014.05.29
  • Accepted : 2014.08.04
  • Published : 2014.08.30

Abstract

Carbon dioxide generated from construction materials and construction material industry among the fields of construction is approximately 67 million tons. It is about 30% of the carbon dioxide generated in the fields of construction. In order to reduce carbon dioxide in the fields of construction, it is necessary to control the use of fossil fuel consumed and decrease carbon emission by reducing the secondary and tertiary curing generating carbon dioxide in construction material industry. Therefore, this study manufactured mortar by having cement as the Plain and substituting three binding materials up to 50% and then adopted different curing methods to analyze congelation and strength characteristics. Test results for strength property by changing binding materials showed that specimens with blast furnace slag, CSA 15% and CAMC 5% resulted in positive effect for strength.

건설 분야 중 건설 재료와 건자재 산업에서 발생하는 $CO_2$는 약 6,700만톤으로 건설 분야에서 발생하는 $CO_2$의 약 30 %를 점유하고 있다. 건설 분야에서 $CO_2$ 저감은 건자재 산업에서 $CO_2$를 발생시키는 2차, 3차 양생을 줄여 소비되는 화석연료 사용과 배출가스 저감의 조절이 필수적이다. 따라서 본 연구는 시멘트 결합재를 기초로 하여 결합재를 40 % 까지 대체하여 모르타르를 제조한 후 양생방법을 달리하여 응결 및 강도 특성을 분석하였다. 결합재 치환율에 따른 강도 특성 결과 증기양생 후 고로슬래그와 CSA 15%, CAMC 5%를 치환한 시험체의 강도 증진이 활발하였다. 특히 고로슬래그 50%, CSA 15%, CAMC 5%를 치환한 시험체가 가장 높게 강도가 증진되었다. 하지만 CAMC 10%의 경우 열팽창에 의한 균열과 온도차에 의한 건조수축, 과도하게 생성된 에트린가이트에 의해 강도가 저하되는 결과를 가져왔다.

Keywords

References

  1. Chae, S.C, 2009 : Mineral Carbonation as a sequestration method of $CO_2$, Journal of the Geological Society of Korea, 45(5), pp.527-555.
  2. Sipila, J. Teir, S., Zevenhoven, R., 2008 : Carbon dioxide sequestration by mineral carbonation, Literature review update 2005-2007, Report VT2008-1, Aboakademi university.
  3. Metz, B., Davison, o., de Coninck, h., Loos, M., Meyer, L. 2005 : Special Report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. IPCC, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp.442.
  4. T.Mitsuda, 1988 : Autoclaved Calcium Silicate Products, Ceramics, 23(8), pp.748-752.
  5. N. Sudo, T. Akiba, 1991 : Introduction to Cement Chemistry, Japan Cement Industry Association, pp.15-20.
  6. M. Tada, 1971 : Autoclaved Lightweight Concrete, Gypsum & Lime, Vol.222, pp.27-34.
  7. T. Hara, N. Inoue, 1971 : Shirasu-lime System of the ALC, Gypsum & Lime, Vol.110, pp.26-30.
  8. H. F. W. Taylor. 1997 : Cement Chemistry, Academic Press, London,
  9. G. L. Kalousek, 1969 : Proceedings of the 5th International Symposium, Chemistry of Cements, Vol.3, pp.523-537.
  10. RIST, 2005 : A market analysis and a prospect of building & construction materials, POSRI Research report
  11. H. F. W. Taylor, 1979 : The Chemistry of Cements, Third printing, Academic Press INC, pp.173.
  12. Powers, T. C., 1965 : Some Physical Aspects of the Hydration of Portland Cement, J. Res. Dev. Labs. Portland cement Ass, Vol.3, No.1, pp.47-56.
  13. Odler, I. and Gebauer, J., 1966 : Cement Hydration in Heat Treatment, Zement-Kalk-Gips, 55. No.6, pp.276-281, German
  14. Taplin, J. H., 1962 : The Temperature Dependence of the hydration Rate of Portland Cement Pate, Austral, J. Appl. Sci., 13(2), pp.164-171.
  15. Kim, H.S, et al. 2013 : Strength Properties of Mortar According to Types of Binders and Curing Method for Development of Construction Material to $CO_2$ Reduction, Journal of Korea Society of Waste Management, 30(8), pp.824-831. https://doi.org/10.9786/kswm.2013.30.8.824
  16. P. Paulini, 1990 : Reaction Mechanism of Concrete Admixture, Cement and Concrete Research, 20(1), pp.910-918. https://doi.org/10.1016/0008-8846(90)90053-Z
  17. Han, C.G, 1999 : A Study on the Properties of High Performance Concrete Using CSA Expansive Additives and Inorganic Admixtures, Journal of the Korea Concrete Institute, 11(1), pp.141-148.
  18. Yoon, S.W, 2004 : Preparation and Application of CSA Expansive Additives Using Industrial Wastes, Journal of the Korea Concrete Institute, 16(3), pp. 369-374. https://doi.org/10.4334/JKCI.2004.16.3.369
  19. Lee, C.Y, Bae, S.Y, 1998 : The Strength Development of Flyash Concrete in Steam Curing, Journal of the Korea Concrete Institute, 10(1), pp.101-108.
  20. Lee, M.K, et al. 2005 : Strength of Recycled Concrete with Furnace Slag Cement under Steam Curing Condition, Journal of the Korea Concrete Institute, 17(4), pp.613-620. https://doi.org/10.4334/JKCI.2005.17.4.613
  21. Sho, K. H, et al. 2011 : Utilization of Separator Bag Filter Dust for High Early Strength Cement Production, Construction and Building Materials, pp.2318-2322.

Cited by

  1. Characteristics of an Extrusion Panel Made by Applying a Modified Curing Method vol.9, pp.12, 2016, https://doi.org/10.3390/ma9050347