• Title/Summary/Keyword: 양극전극

Search Result 299, Processing Time 0.027 seconds

A Study on Fire Hazard by Metallic Migration (금속 마이그레이션에 의한 화재 위험성 연구)

  • Choi, Gyeong Won;Hyun, Byoung Soo;Kim, Sun Jae;Lim, Kyu Young;Woo, Seung Woo;Lee, Dong Kyu;Cho, Young Jin;Park, Jong Taek;Goh, Jae Mo;Park, Nam Kyu
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.114-119
    • /
    • 2019
  • We found metallic migration phenomena at the fire scene in Printed circuit board (PCB) of LED light equipment which are commonly used. Accordingly we did this study. In order to generate rapidly metallic migration, we experiment the water drop test under low voltage (3.0 V) and a small amount of water condition. As a results of our experiment, we saw the growth of metallic migration of Copper and checked directly short of the PCB between isolated two poles by Cu migration. Finally we saw the shape of dendrite pattern by Cu migration using Scanning electron microscope (SEM) and analyzed that components via Energy dispersive Spectrometer (EDS).

Numerical Investigation of the Discharge Efficiency of a Vanadium Redox Flow Battery with Varying Temperature and Ion Concentration (온도와 이온농도의 변화에 대한 바나듐 레독스 플로우 배터리의 방전 효율에 관한 수치해석)

  • Lee, Jonghyeon;Park, Heesung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.769-776
    • /
    • 2016
  • In this study, a numerical simulation of a vanadium redox flow battery was investigated for reactions involving an electrochemical species using comprehensive conservation laws and a kinetic model. For a 3-D geometry of the cell, the distributions of electric potential, vanadium concentration, overpotential, and ohmic loss were calculated. The cell temperature and initial vanadium ion concentration were set as variables. The voltage and electrochemical loss were calculated for each variable. The effects of each variable's impact on the electrochemical performance of a vanadium redox flow battery was numerically analyzed using the calculated overpotential in the electrode and the ohmic loss in the electrolyte phase. The cell temperature increased from $20^{\circ}C$ to $80^{\circ}C$ when the voltage efficiency decreased from 89.34% to 87.29%. The voltage efficiency increased from 88.65% to 89.25% when the vanadium concentration was changed from $1500mol/m^3$ to $3000mol/m^3$.

Effect of the Pore Structure on the Anodic Property of SOFC (SOFC 음극의 기공구조가 음극특성에 미치는 영향)

  • 허장원;이동석;이종호;김재동;김주선;이해원;문주호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.86-91
    • /
    • 2002
  • Solid Oxide Fuel Cells (SOFC) are of great interest of next generation energy conversion system due to their high energy efficiency and environmental friendliness. The basic SOFC unit consists of anode, cathode and solid electrolyte. Among these components, anode plays the most important role for the oxidation of fuel to generate electricity and also behaves as a substrate of the whole cell. It is normally requested that the anode materials should have the high electrical conductivity and gas permeability to reduce the polarization loss of the cell. In this study, the effect of pore former on the microstructure of anode substrate was investigated and thus on the electrical conductivity and the gas permeability. According to the results, microstructure and electrical conductivity of anode substrate were greatly influenced by the shape of pore former and especially by the anisotrpy of the pore former. The use of anisotropic pore former is supposed to deteriorate the cell performance by which the electrical conduction path is disconnected but also the effective gas diffusion path for the fuel is reduced.

The Study on Structural Change and Improvement of Electrochemical Properties by Co-precipitation Condition of Li[Ni0.8Co0.15Al0.05]O2 Electrode (Li[Ni0.8Co0.15Al0.05]O2 전극의 공침 조건을 통한 구조적 변화와 전기적 특성의 향상 고찰)

  • Im, Jung-Bin;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.98-103
    • /
    • 2011
  • [ $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ ]cathode material for lithium secondary battery is obtained using co-precipitation method. To determine the optimal metal solution concentration value, the CSTR coprecipitation was carried out at various concentration values(1-2 mol/L). The surface morphology of coated samples was characterization by SEM(scanning electron microscope) and XRD (X-Ray Diffraction)analyses. Impedance analysis and cyclic voltammogram presented that internal resistance of the cell was dependent upon the concentration of metal solution. such data is very helpful in determining the optimal content of metal solution concentration to enhancing electrochemical property by adjusting powder size distribution and crystal structure.

Synthesis and Electrochemical Characteristics of Carbon added Li3V2(PO4)3 (탄소첨가한 Li3V2(PO4)3의 합성 및 전기화학적 특성)

  • Jo, Yeong-Im;Na, Byung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • The purpose of this study was to improve the conductivity of $Li_3V_2(PO_4){_3}$ by adding carbon source so that the discharge rate and cyclic properties were improved. Glucose and CNT were added to $Li_3V_2(PO_4){_3}$ and the structure and electrochemical properties were studied. $Li_3V_2(PO_4){_3}$, $Li_3V_2(PO_4){_3}$/C and $Li_3V_2(PO_4){_3}$/CNT were synthesised by solid state reaction using hydrogen reduction method at 600, 700, 800, $900^{\circ}C$. The cathode materials were assembled to coin cell type 2032 with Lithium metal as a counter electrode. The coin cell was galvanostatically evaluated in the voltage range of 3.0~4.8 V.

Using a Bismuth-film Glassy Carbon Electrode Based on Anodic Stripping Voltammetry to Determine Cadmium and Lead in a Standard Rice Flour (양극벗김전위법 비스무스막 유리탄소전극을 이용한 표준 쌀 분말 내 카드뮴과 납 측정)

  • Kim, Hak-Jin;Son, Dong-Wook;Mo, Chang-Yeon;Han, Jae-Woong;Kim, Gi-Young;Park, Sang-Won;Om, Ae-Son
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.377-381
    • /
    • 2009
  • Excessive presence of heavy metals in environment may contaminate plants and fruits grown in that area. Rapid on-site monitoring of heavy metals can provide useful information to efficiently characterize heavy metal-contaminated sites and minimize the exposure of the contaminated food crops to humans. This study reports on the evaluation of a bismuth-coated glassy carbon electrode for simultaneous determination of cadmium (Cd) and lead (Pb) in a NIST-SRM 1568a rice flour by anodic stripping voltammetry (ASV). The use of a supporting electrolyte 0.1 M $HNO_3$ at a dilution ratio (sample pretreated with acid digestion in a microwave oven: supporting electrolyte) of 1:1 provided well-defined, sharp and separate peaks for Cd and Pb ions, thereby resulting in strongly linear relationships between Cd and Pb concentrations and peak currents measured with the electrode ($R^2\;=\;0.97$, 0.99 for Cd and Pb, respectively). The validation test results for spiked standard solutions with different concentrations of Cd and Pb gave acceptable predictability for both spiked Cd and Pb ions with mean prediction errors of 6 to 30%. However, the applicability of the electrode to the real rice flour sample was limited by the fact that Cd concentrations spiked in the rice flour sample were overly estimated with relatively high variations even though Pb ion could be quantitatively measured with the electrode.

Formation Mechanism of Chlorate ($ClO_3\;^-$) by Electrochemical Process (전기화학적 공정에 의한 클로레이트의 생성메커니즘)

  • Baek, Ko-Woon;Jung, Yeon-Jung;Kang, Joon-Wun;Oh, Byung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.627-634
    • /
    • 2009
  • This study was done to find out the formation mechanism of chlorate by electrochemical process using chloride ion ($Cl^-$) as an electrolyte. Firstly, the effective factors such as pH and initial chloride concentration were figured out to see the formation property of chlorate during electrolysis. And the relation of free chlorine, and mixed oxidants such as OH radical and ozone with chlorate were estimated to concretize the formation mechanism. As a result, it was found that the major reaction of chlorate formation would be electrochemical reaction with free chlorine, and also the direct oxidation of chloride ion and the reaction by OH radical were participated in the formation of chlorate. Moreover, it was observed that formed chlorate was oxidized to perchlorate. Lastly, the optimum condition was recommended by comparing free chlorine with chlorate concentration during the electrochemical process with the different electrode separation.

Monitoring $CO_2$ injection with cross-hole electrical resistivity tomography (시추공간 전기비저항 토모그래피를 이용한 $CO_2$ 주입 모니터링)

  • Christensen, N.B.;Sherlock, D.;Dodds, K.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.44-49
    • /
    • 2006
  • In this study, the resolution capabilities of electrical resistivity tomography (ERT) in the monitoring of $CO_2$ injection are investigated. The pole-pole and bipole-bipole electrode configuration types are used between two uncased boreholes straddling the $CO_2$ plume. Forward responses for an initial pre-injection model and three models for subsequent stages of $CO_2$ injection are calculated for the two different electrode configuration types, noise is added and the theoretical data are inverted with both L1- and L2-norm optimisation. The results show that $CO_2$ volumes over a certain threshold can be detected with confidence. The L1-norm proved superior to the L2-norm in most instances. Normalisation of the inverted models with the pre-injection inverse model gives good images of the regions of changing resistivity, and an integrated measure of the total change in resistivity proves to be a valid measure of the total injected volume.

C-V Characteristics of Oxidized Porous Silicon (다공성 실리콘 산화막의 C-V 특성)

  • Kim, Seok;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.572-582
    • /
    • 1996
  • The porous silicon was prepared in the condition of 70mA/cm2 and 5.10 sec and then oxidized at 800~110$0^{\circ}C$ MOS(Metal Oxide Semiconductor) structure was prepared by Al electrode deposition and analyzed by C-V (Capacitance-Voltage) characteristics. Dielectric constant of oxidized porous silicon was large in the case of low temperature (800, 90$0^{\circ}C$) and short time(20-30min) oxidation and was nearly the same as thermal SiO2 3.9 in the case of high temperature (110$0^{\circ}C$) and long time (above 60 min) It is though to be caused byunoxidized silicon in oxidized porous silicon film and capacitance increase due to surface area increment effect.

  • PDF

An Electrochemical and Optical Study on the Corrosion and Passivation of Metals. An Electrochemical and Optical Study on the Passivation Film of Electrolytic Iron (금속 부식과 부동화에 관한 전기화학적 및 광학적 연구. 순철의 부동화 피막에 관한 전기화학적 및 광학적 연구)

  • Park Byung So;Paik Woon-Kie;Yeo, In Hyeong
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.365-369
    • /
    • 1978
  • Ellipsometric and reflectance measurements were made on an iron surface in a cathodically reduced state and in an anodically passivated state. From the differences in the optical parameters (${\Delta},\;{\psi}$, and reflectance) between the reduced (film-free) and passivated (film-covered) states the thickness and optical constants of the surface film were determined. In the passive state at -400 mV vs. SCE in borate-boric acid buffer solution the anodic film had a thickness of about 11${\AA}$ and optical constants of ${\tilde{n}}$= 2.8 - 0.8 i. This value indicates a substantial electronic conductivity of the anodic film.

  • PDF