DOI QR코드

DOI QR Code

Numerical Investigation of the Discharge Efficiency of a Vanadium Redox Flow Battery with Varying Temperature and Ion Concentration

온도와 이온농도의 변화에 대한 바나듐 레독스 플로우 배터리의 방전 효율에 관한 수치해석

  • Lee, Jonghyeon (Graduate school of Mechanical Engineering, Changwon Nat'l Univ.) ;
  • Park, Heesung (Graduate school of Mechanical Engineering, Changwon Nat'l Univ.)
  • 이종현 (창원대학교 대학원 기계공학과) ;
  • 박희성 (창원대학교 대학원 기계공학과)
  • Received : 2016.05.30
  • Accepted : 2016.10.08
  • Published : 2016.12.01

Abstract

In this study, a numerical simulation of a vanadium redox flow battery was investigated for reactions involving an electrochemical species using comprehensive conservation laws and a kinetic model. For a 3-D geometry of the cell, the distributions of electric potential, vanadium concentration, overpotential, and ohmic loss were calculated. The cell temperature and initial vanadium ion concentration were set as variables. The voltage and electrochemical loss were calculated for each variable. The effects of each variable's impact on the electrochemical performance of a vanadium redox flow battery was numerically analyzed using the calculated overpotential in the electrode and the ohmic loss in the electrolyte phase. The cell temperature increased from $20^{\circ}C$ to $80^{\circ}C$ when the voltage efficiency decreased from 89.34% to 87.29%. The voltage efficiency increased from 88.65% to 89.25% when the vanadium concentration was changed from $1500mol/m^3$ to $3000mol/m^3$.

본 연구는 화학종을 포함한 반응을 위해 종합적인 보존법칙과 운동학적 모델을 사용하여 수치해석을 진행하였다. 삼차원 형상으로 전극 전위, 바나듐 이온농도, 과전압 그리고 저항손실을 계산하였다. 셀의 온도, 초기 바나듐 이온농도를 변수로 설정하고 각 변수에 따른 전압과 손실을 계산하였다. 계산된 양극, 음극에서의 과전압과 전해액 상의 저항 손실을 통해 각각의 변수가 바나듐 레독스 플로우 배터리의 전기화학적 성능에 미치는 영향을 수치해석적으로 예측하고 분석하였다. 셀의 온도가 $20^{\circ}C$에서 $80^{\circ}C$로 증가되면 전압효율은 89.34%에서 87.29%로 2.05% 감소한다. 바나듐 농도가 $1500mol/m^3$에서 $3000mol/m^3$으로 증가되면 전압효율은 88.65%에서 89.25%로 0.6% 상승하였다.

Keywords

References

  1. Castillo, A. and Gayme, D. F., 2014, "Grid-scale Energy Storage Applications in Renewable Energy Integration: A Survey," Energy Conversion and Management 87, pp. 885-894. https://doi.org/10.1016/j.enconman.2014.07.063
  2. Pires, V. F., Cadaval, E. R., Vinnikov, D., Roasto, I. and Martins, J. F., 2014, "Power Converter Interfaces for Electrochemical Energy Storage Systems - A Review," Energy Conversion and Management 86, pp. 453-475. https://doi.org/10.1016/j.enconman.2014.05.003
  3. Shah, A. A., Al-Fetlawi, H. and Walsh, F. C., 2010, "Dynamic Modelling of Hydrogen Evolution Effects in the All-vanadium Redox Flow Battery," Electrochimica Acta 55.3, pp. 1125-1139. https://doi.org/10.1016/j.electacta.2009.10.022
  4. Ma, X., Zhang, H. and Xing. F., 2011, "A Three-dimensional Model for Negative Half Cell of the Vanadium Redox Flow Battery," Electrochimica Acta 58, pp. 238-246. https://doi.org/10.1016/j.electacta.2011.09.042
  5. Turker, B., Klein, S. A., Komsiyska, L. and Trujillo, J. J., 2013, "Utilizing a Vanadium Redox Flow Battery to Avoid Wind Power Deviation Penalties in an Electricity Market," Energy Conversion and Management 76, pp. 1150-1157. https://doi.org/10.1016/j.enconman.2013.09.014
  6. Xu, Q., Zhao, T. S. and Leung. P. K., 2013, "Numerical Investigations of Flow Field Designs for Vanadium Redox Flow Batteries," Applied energy 105, pp. 47-56. https://doi.org/10.1016/j.apenergy.2012.12.041
  7. Kim, S. and Kim, D., 2013, "Study of Li-Ion Diffusion and Phase Transition in Cathode of Li-Ion Battery," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 7, 665-667.
  8. Chen, D., Wang, S., Xiao, M. and Meng. Y., 2010, "Synthesis and Properties of Novel Sulfonated Poly (arylene ether sulfone) Ionomers for Vanadium Redox Flow Battery," Energy Conversion and Management 51.12, pp. 2816-2824. https://doi.org/10.1016/j.enconman.2010.06.019
  9. Turker, B., Klein, S. A., Hammer, E. M., Lenz, B. amd Komsiyska, L., 2013, "Modeling a Vanadium Redox Flow Battery System for Large Scale Applications," Energy Conversion and Management 66, pp. 26-32. https://doi.org/10.1016/j.enconman.2012.09.009
  10. Boyle, G., 2012, "Renewable Electricity and the Grid: the Challenge of Variability," Earthscan.
  11. Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S. and Nitta, K., 2016, "Charge-discharge Behavior of Sn-Ni Alloy Film Electrodes in an Intermediate Temperature Ionic Liquid for the Electrolyte of a Sodium Secondary Battery," Electrochimica Acta.
  12. Hyun, Y., Choi, J. Y., Park, H. K. and Lee, C. S., 2016, "Synthesis and Electrochemical Performance of Ruthenium Oxide-coated Carbon Nanofibers as Anode Materials for Lithium Secondary Batteries," Applied Surface Science.
  13. Hwang, B. and Kim, K, 2013, "Redox Pairs in Redox Flow Batteries," Korean Electrochemical Society 16, pp. 99-110. https://doi.org/10.5229/JKES.2013.16.3.99
  14. Zhou, X. L., Zhao, T. S., An, L., Zeng, Y. K. and Yan, X. H., 2015, "A Vanadium Redox Flow Battery Model Incorporating the Effect of Ion Concentrations on Ion Mobility," Applied Energy 158, pp. 157-166. https://doi.org/10.1016/j.apenergy.2015.08.028
  15. Sim, S. H., Gang, J. H., An, D., Kim, S. I., Kim, J. Y. and Choi, J. H., 2013, "Remaining Useful Life Prediction of Li-Ion Battery Based on Charge Voltage Characteristics," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 4, pp. 313-322.
  16. Khazaeli, A., Vatani, A., Tahouni, N. and Panjeshahi, M. H., 2015, "Numerical Investigation and Thermo Dynamic Analysis of the Effect of Electrolyte Flow Rate on Performance of all Vanadium Redox Flow Batteries," Journal of Power Sources 293, pp. 599-612. https://doi.org/10.1016/j.jpowsour.2015.05.100
  17. Shah, A. A., Watt-Smith, M. J. and Walsh, F. C., 2008, "A Dynamic Performance Model for Redox-flow Batteries Involving Soluble Species," Electrochimica Acta53.27: 8087-8100. https://doi.org/10.1016/j.electacta.2008.05.067
  18. You, S. B., Jung, J. S., Cheong, K. B. and Go. J. Y., 2011, "Numerical Simulation of Lithium-Ion Batteries for Electric Vehicles," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 6, pp. 649-656. https://doi.org/10.3795/KSME-B.2011.35.6.649
  19. Tang, A., Bao, J. and Skyllas-Kazacos, M., 2014, "Studies on Pressure Losses and Flow Rate Optimization in Vanadium Redox Flow Battery," Journal of power sources 248, pp. 154-162. https://doi.org/10.1016/j.jpowsour.2013.09.071
  20. Knehr, K. W. and Kumbur, E. C., 2011, "Open Circuit Voltage of Vanadium Redox Flow Batteries: Discrepancy between Models and Experiments," Electrochemistry Communications 13.4, pp. 342-345. https://doi.org/10.1016/j.elecom.2011.01.020
  21. Knehr, K. W., Agar, E., Dennison, C. R., Kalidindi, A. R. and Kumbur, E. C., 2012, "A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport Through the Membrane," Journal of The Electrochemical Society 159.9, pp. A1446-A1459. https://doi.org/10.1149/2.017209jes
  22. Aaron, D. S., Liu, Q., Tang, Z., Grim, G. M., Papandrew, A. B., Turhan, A. and Mench, M. M., 2012, "Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture," Journal of Power sources 206, pp. 450-453. https://doi.org/10.1016/j.jpowsour.2011.12.026
  23. Knopf, D. A., Luo, B. P., Kreger, U. K. and Koop, T., 2013, "Thermodynamic Dissociation Constant of the Bisulfate Ion from Raman and Ion Interaction Modeling Studies of Aqueous Sulfuric Acid at Low Temperatures," The Journal of Physical Chemistry A 107.21, pp. 4322-4332. https://doi.org/10.1021/jp027775+
  24. Newman, J. and Thomas-Alyea, K. E., 2004, "Electrochemical systems."
  25. Yin, C., Guo, S., Fang, H., Liu, J., Li, Y., Tang, H. 2015, "Numerical and Experimental Studies of Stack Shunt Current for Vanadium Redox Flow Battery," Applied Energy 151, pp. 237-248. https://doi.org/10.1016/j.apenergy.2015.04.080
  26. Tang, A., Bao, J. and Skyllas-kazacos, M., 2011, "Dynamic Modelling of the Effects of Ion Diffusion and Side Reactions on the Capacity Loss for Vanadium Redox Flow Battery," Power Sources 196, pp. 10737-10747. https://doi.org/10.1016/j.jpowsour.2011.09.003