DOI QR코드

DOI QR Code

Discharged Maximum Current Density of Vanadium Redox Flow Battery with Increased Electrolyte Flow Rate

바나듐계 산화-환원 유동 전지의 최대 방전전류와 유량의 상관성에 대한 실험적 연구

  • 김정명 (창원대학교 대학원 기계공학과) ;
  • 박희성 (창원대학교 대학원 기계공학과)
  • Received : 2016.05.30
  • Accepted : 2016.10.08
  • Published : 2016.12.01

Abstract

All-vanadium redox flow batteries (VRFBs) are used as energy storage systems for multiple intermittent power sources. The performance of the VRFBs depends on the materials and operating conditions. Hence, performance characterization is of great importance in the development of the VRFBs. This paper proposes a method for determining the maximum current density based on stoichiometric ratios. A laboratory-scaled VRFB with a projected electrode area of $25cm^2$ is electrically charged when the state of the charge has begun from 0.6. The operating conditions, such as current density and volumetric flow rate are important in the test, and the maximum current density is influenced by the mass transfer coefficient. The results show that increasing the electrolyte flow rate from 5 mL/min to 60 mL/min enhances the maximum current density up to $520mA/cm^2$.

바나듐 전해질 산화-환원 흐름전지(vanadium redox flow batteries, VRFBs)는 간헐적 에너지 저장 시스템의 에너지 저장장치로 사용된다. VRFBs는 재료 및 동작조건에 따라 성능의 차이를 보이며, 각 성능특성에 따른 VRFBs개발이 요구된다. 본 연구에 사용된 단위셀은 반응면적 $25cm^2$이며, 전해액은 0.6의 충전상태를 나타낸다. 방전전류밀도를 0에서 $520mA/cm^2$ 까지 변화시키면서 동시에 전해질 유량도 5mL/min에서 60mL/min까지 변화시켰다. 동일한 입구 전해액 상태에 따른 방전 성능 평가를 위해 4개의 탱크를 사용한 비순환 시스템을 구축하였다. 본 논문은 유량 및 전류밀도의 변화에 대한 단자전압을 측정하였으며, $25cm^2$ 반응면적을 가지는 바나듐계 산화-환원 유동전지 시스템의 최대전류밀도에 대한 실험식을 도출하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Prokopius, P. R., 1980, "Model for Calculating Electrolyte Shunt Path Losses in Large Electrochemical Energy Conversion Systems," NASA TM X-33590.
  2. Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y. and Ding, Y., 2009, "Progress in Electrical Energy Storage System: A Critical Review," Nat. Sci., 19, pp. 291-312.
  3. Yang, Z., Zhang, J., Kintner-Meyer, MC., Lu, X., Choi, D., Lemmon, J. P. and Liu, J., 2011, "Electrochemical Energy Storage for Green Grid," Chem. Rev., 111, pp. 3577-613. https://doi.org/10.1021/cr100290v
  4. Dunn, B., Kamath, H. and Tarascon, J. M., 2011, "Electrical Energy Storage for the Grid: A Battery of Choices," Science, 334, pp. 928-35. https://doi.org/10.1126/science.1212741
  5. Carta, J. A., 2012, "In Comprehensive Renewable Energy"; Elsevier Ltd., Vol. 2, pp. 569-622.
  6. Dell, R. M. and Rand, D. A. J., 2001, "Energy Storage - a Key Technology for Global Energy Sustainability," Power Sources, 100, pp. 2-17. https://doi.org/10.1016/S0378-7753(01)00894-1
  7. Ge, B., Wang, W., Bi, D., Rogers, C. B., Peng, F. Z., de Almeida, A. T. and Abu-Rub, H., 2013, "Energy Storage System-based Power Control for Grid-connected Wind Power Farm," Int. J. Electr. Power Energy Syst, 44, pp. 115-122. https://doi.org/10.1016/j.ijepes.2012.07.021
  8. Kim, S. and Kim, D., 2013, "Study of Li-Ion Diffusion and Phase Transition in Cathode of Li-Ion Battery," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 7, pp. 665-667.
  9. Sim, S. H., Gang, J. H., An, D., Kim, S. I., Kim, J. Y. and Choi, J. H., 2013, "Remaining Useful Life Prediction of Li-Ion Battery Based on Charge Voltage Characteristics," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 4, pp. 313-322.
  10. You, S. B., Jung, J. S., Cheong, K. B. and Go, J. Y., 2011, "Numerical Simulation of Lithium-Ion Batteries for Electric Vehicles," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 6, pp. 649-656. https://doi.org/10.3795/KSME-B.2011.35.6.649
  11. Leadbetter, J. and Swan, L. G., 2012, "Selection of Battery Technology to Support Grid-integrated Renewable Electricity," J. Power Sources, 216, pp. 376-386. https://doi.org/10.1016/j.jpowsour.2012.05.081
  12. Nair, N. K. C. and Garimella, N., 2010, "Battery Energy Storage Systems: Assessment for Small-scale Renewable Energy Integration," Energy Build, 42, pp. 2124-2130. https://doi.org/10.1016/j.enbuild.2010.07.002
  13. McDowall, J., 2006, "Integrating Energy Storage with Wind Power in Weak Electricity Grids," J. Power Sources, 162, pp. 959-964. https://doi.org/10.1016/j.jpowsour.2005.06.034
  14. Skyllas-Kazacos, M. and Menictas, C., 1997, "The Vanadium Redox Battery for Emergency Back-up Applications," International Telecommunications Energy Conference, pp. 463-471.
  15. Joerissen, L., Garche, J., Fabjan, C. and Tomazic, G., 2004, "Possible Use of Vanadium Redox-flow Batteries for Energy Storage in Small Grids and Stand-alone Photovoltaic Systems," J. Power Sources, 127, pp. 98-104. https://doi.org/10.1016/j.jpowsour.2003.09.066
  16. Wade, N. S., Taylor, P. C., Lang, P. D. and Jones, P. R., 2010, "Evaluating the Benefits of an Electrical Energy Storage System in a Future Smart Grid," Energy Policy, 38, pp. 7180-7188. https://doi.org/10.1016/j.enpol.2010.07.045
  17. Kear, G., Shah, A. A. and Walsh, F. C., 2012, "Development of the All-vanadium Redox Flow Battery for Energy Storage: a Review of Technological," Int. J. Energy Res, 36, pp. 1105-1120. https://doi.org/10.1002/er.1863
  18. Shibata, T., Kumamoto, T., Nagaoka, Y., Kawase, K. and Yano, K., 2013, "Redox Flow Batteries for the Stable Supply of Renewable Energy," SEI Tech. Rev., 76, pp. 14-22.
  19. Tokuda, N., Kanno, T., Hara, T., Shigematsu, T., Tsutsui, Y., Ikeuchi, A., Itou, T. and Kumamoto, T., 2000, "Development of a Redox Flow Battery System," SEI Tech. Rev., 50, pp. 88-94.
  20. Watt-Smith, M. J., Ridley, P., Wills, R. G. A., Shah, A. A. and Walsh, F. C., 2013, "The Importance of Key Operational Variables and Electrolyte Monitoring to the Performance of an All Vanadium Redox Flow Battery," J. Chem. Technol. Biotechnol, 88, pp. 126-138. https://doi.org/10.1002/jctb.3870
  21. Thaller, L. H., 1979, "Redox Flow Cell Energy Storage Systems," Medium: X; Size: pages: 12.
  22. Skyllas-Kazakos, M. and Grossmith, F. J., 1987, "Efficient Vanadium Redox Flow Cell," Electrochem. Soc, 134, pp. 2950-2953. https://doi.org/10.1149/1.2100321
  23. Rychcik, M. and Skyllas-Kazacos, M., 1988, "Characteristics of a New All-vanadium Redox Flow Battery," J. Power Sources, 22, pp. 59-67. https://doi.org/10.1016/0378-7753(88)80005-3
  24. Bartolozzi, M., 1989, "Development of Redox Flow Batteries. A Historical Bibliography," J. Power Sources, 27, pp. 219-234. https://doi.org/10.1016/0378-7753(89)80037-0
  25. Skyllas-kazacos, M., Kasherman, D., Hong, D. R. and Kazacos, M., 1991, "Characteristics and Performance of 1 kW UNSW Vanadium Redox Battery," J. Power Sources, 35, pp. 399-404. https://doi.org/10.1016/0378-7753(91)80058-6
  26. Zhao, P., Zhang, H., Zhou, H., Chen, J., Gao, S. and Yi, B., 2006, "Characteristics and Performance of 10 kW Class All-vanadium Redox-flow Battery Stack," J. Power Sources, 162, pp. 1416-1420. https://doi.org/10.1016/j.jpowsour.2006.08.016
  27. Aaron, D. S., Liu, Q., Tang, Z., Grim, G. M., Papandrew, A. B., Turhan, A., Zawodzinski, T. A. and Mench, M. M., 2012, "Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture," J. Power Sources, 206, pp. 450-453. https://doi.org/10.1016/j.jpowsour.2011.12.026
  28. Li, J., Zhang, Y., Zhang, S. and Huang, X., 2015, "Sulfonated Polyimide/s-MoS2 Composite Membrane with High Proton Selectivity and Good Stability for Vanadium Redox Flow Battery," Journal of Membrane Science, 490, p. 179. https://doi.org/10.1016/j.memsci.2015.04.053
  29. Watt-Smith, M. J., Ridley, P., Wills, R. G. A., Shah, A. A. and Walsh, F. C., 2013, "The Importance of Key Operational Variables and Electrolyte Monitoring to the Performance of an All Vanadium Redox Flow Battery," J. Chem. Technol. Biotechnol, 88, pp. 126-138. https://doi.org/10.1002/jctb.3870
  30. Ma, X., Zhang, H., Sun, C., Zou, Y. and Zhang, T., 2012, "An Optimal Strategy of Electrolyte Flow Rate for Vanadium Redox Flow Battery," J. Power Sources, 203, pp. 153-158. https://doi.org/10.1016/j.jpowsour.2011.11.036
  31. Gattrell, M., Park, J., MacDougall, B., Apte, J., McCarthy, S. and Wu, C. W., 2004, "Study of the Mechanism of the Vanadium 4+/5+ Redox Reaction in Acidic Solutions," J Electrochem, 151: A123-A130. https://doi.org/10.1149/1.1630594
  32. Tang, A., Bao, J. and Skyllas-Kazacos, M., 2011, "Dynamic Modelling of the Effects of Ion Diffusion and Side Reactions on the Capacity Loss for Vanadium Redox Flow Battery," Power Sources, 196, pp. 10737-10747. https://doi.org/10.1016/j.jpowsour.2011.09.003
  33. Schmal, D., Erkel, J. and Duin, P. J., 1986, "Mass Transfer at Carbon Fiber Electrodes," J. Appl. Electrochem, 16, pp. 422-430. https://doi.org/10.1007/BF01008853
  34. Liu, H., Yang, L., Xu, Q. and Chuanwei, Y., 2015, "Corrosion Behavior of a Bipolar Plate of Carbon-polythene Composite in a Vanadium Redox Flow Battery," RSC Adv, 5, pp. 5928-5932. https://doi.org/10.1039/C4RA13697G
  35. Shah, A. A., Watt-Smith, M. J. and Walsh, F. C., "A Dynamic Performance Model for Redoxflow Batteries Involving Soluble Species," Electrochim Acta, 53, pp. 8087-8100.