• 제목/요약/키워드: 수학 문제해결

검색결과 1,333건 처리시간 0.025초

초등학교 수학과 문제해결 교육 재고 (Reconsideration of Teaching Mathematics Problem Solving in Elementary School)

  • 정은실
    • 한국초등수학교육학회지
    • /
    • 제19권2호
    • /
    • pp.123-141
    • /
    • 2015
  • 이 연구의 목적은 우리나라의 초등학교 수학과 문제해결 교육은 어떠했는지를 반추해보기 위해 그동안 우리나라 초등학교 문제해결 지도의 역사를 되돌아보고, 초등학교 수학과 교육과정과 교과서 분석을 통해 문제해결이 어떻게 다루어졌는지를 알아보기 위한 것이다. 그 결과 제4차 교육과정부터 2009개정 교육과정 현재까지 문제해결이 계속 강조되어 왔으나, 그에 따른 교과서에서는 교육과정을 제대로 반영하지 못한 경우가 많음을 알 수 있었다. 또한 제6차 교육과정에서 문제해결에 대한 교육이 양적으로 가장 많은 부분을 차지하다가 그 이후 조금씩 약화되고 있으며, 2007, 2009 개정 교육과정에서는 문제해결을 위한 교육으로 전환하려는 움직임이 있음을 알 수 있었다. 문제해결을 통한 지도는 제대로 이뤄지지 못하고 있다.

수학적 지식의 구조와 문제 해결을 통한 탐구학습

  • 박혜경;전평국
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제19권2호
    • /
    • pp.389-407
    • /
    • 2005
  • 수학은 위계적이고 구조적인 특성을 가지고 있어서 학생들이 적절하게 학습하면 내적 동기유발이 가능하고 흥미 있게 학습해 나갈 수 있는 반면 단편적인 지식들로 학습하려 한다면 그 양이 방대해지고 제대로 이해하기가 어렵다. 그러므로 교사는 수학적 지식의 구조를 깨달아 지식의 본체가 내적으로 어떻게 조직되고 상호 관련되어 있는지 알아야 하고 학생들이 수학적인 아이디어와 절차를 획득하고 탐구하게 하는 적절한 문제를 제시하여 문제해결을 통해 가르쳐 가는 방법을 생각해야 할 것이다. 이 때에 학생들은 문제해결 과정에서 능동적인 역할을 하면서 자신이 학습하고 있는 것의 핵심을 인식하고 호기심을 갖고 유의미한 기능들을 이끌어내는 학습을 해야 하는데, 이는 오랜 전통의 탐구 학습과 그 맥락을 같이 하는 것이다. 수학교과 고유의 특성을 살려 지식의 구조를 가르침에 있어서 교수 방법으로의 문제해결을 통한 지도와 학습 방법으로의 탐구학습 과정은 잘 조화될 수 있다. 이러한 조화된 모습을 드러나게 하고자 초등학교 5학년 가 단계에서 '평면도형의 넓이와 둘레 사이의 관계'를 탐구하게 하는 문제해결을 통한 탐구학습 과제를 제시해 보았다. 30-40년을 거슬러 올라가는 역사를 갖는 지식의 구조나 탐구학습, 문제해결에 대한 관심은 오늘날에도 여전히 시사하는 바가 크다고 하겠다. 수학교육에 관한 연구들은 완전히 새로운 것이기보다는 이전의 것들이 주는 의미를 되새기고 오늘의 상황에 비추어 해석할 때 수학교육은 한 단계 올라서게 된다.

  • PDF

FOCUS 문제해결과정이 수학 문제해결력 및 수학적 태도에 미치는 영향 (The Effects of the FOCUS Problem Solving Steps on Mathematical Problem Solving Ability and Mathematical Attitudes)

  • 이연주;류성림
    • 한국초등수학교육학회지
    • /
    • 제21권1호
    • /
    • pp.243-262
    • /
    • 2017
  • 본 연구에서는 FOCUS 문제해결과정을 적용한 교수.학습 방법이 학생들의 수학 문제해결력과 수학적 태도에 미치는 효과를 분석함으로써 앞으로의 수학학습을 개선하고자 하는데 목적이 있다. 본 연구에서는 4학년 1학기 수학의 2개 단원에 걸쳐 총 13차시에 대하여 FOCUS 문제해결과정을 적용하였고, 수학 문제해결력 검사와 수학적 태도 검사를 사전과 사후 모두 사용한 후 t-검정을 실시한 결과를 토대로 학생들의 변화를 분석하였다. 연구를 통하여 얻은 결론은 다음과 같다. 첫째, FOCUS 문제해결과정에 따른 학습활동이 학생들의 수학 문제해결력 향상에 긍정적인 효과를 보였다. 둘째, 수학적 태도 가운데 수학적 호기심, 수학적 반성, 수학적 가치의 3가지 요인에 있어서는 통계적으로도 유의미한 효과가 있는 것으로 나타났으며, 실험집단의 학생들의 변화를 분석한 결과에서는 수학적 태도에 속하는 6가지 요인 모두에 대하여 긍정적인 태도 형성에 영향을 주었다고 볼 수 있다. 셋째, FOCUS 단계에 따라 문제를 풀어봄으로써 학생 스스로 성공했을 때의 만족감을 느꼈으며 검토와 반성을 통하여 자신의 오류를 직접 찾고 해결해나갈 때의 기쁨으로 인하여 FOCUS 문제해결과정을 적용한 활동이 보다 지속적으로 이루어진다면 학생들의 문제해결력에 있어서도 크게 의미 있는 효과를 기대할 수 있을 것이다.

  • PDF

연역적 문제만들기 방법의 구체화와 활용 (A Concretization and Application of Deductive Problem Making Method)

  • 한인기;허은숙;서은희
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권4호
    • /
    • pp.653-674
    • /
    • 2023
  • 수학과 교육과정에서 수학 문제해결력 신장, 수학 문제만들기 등이 꾸준히 강조되고 있다. 본 연구에서는 Brown & Walter가 제안한 what-if-not 방법과는 다른 방향의 문제만들기 방법을 연구하였다. 여기서 다루는 문제만들기 방법에서는 출발점 문제의 문제해결 과정을 분석하여 그 구성 요소들을 변화시키며, 얻어진 변화를 바탕으로 문제해결 과정을 역으로 거슬러 올라가면서 새로운 문제, 즉 출발점 문제를 변형시킨 문제를 만들었다. 이러한 순서로 문제를 만들면, 문제해결 과정으로부터 새로운 변형된 문제가 유도될 수 있다. 즉, 문제해결 과정이 문제에 선행하게 되며, 본 연구에서는 이러한 문제만들기 방법을 연역적 문제만들기라고 명명하였다. 특히, 연역적 문제만들기의 다양한 사례들, 특징들을 구체적으로 제시하였으며, 치환을 이용하여 로그가 포함된 방정식으로부터 지수, 무리식, 삼각함수가 포함된 방정식 등을 만드는 과정을 소개하였다. 연역적 문제만들기는 문제해결의 반성 단계에서 문제해결 결과를 검증하고 확장하는 활동과 관련될 수 있으며, 수학 교사가 개념 정착, 복습 등과 같은 교수학적 목적에 따라 기존 문제를 변형시킬 때도 활용할 수 있을 것으로 기대된다.

개방형 교수법에 의한 수학지도가 문제해결력과 신념 형성에 미치는 효과

  • 문성길;전평국
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제11권
    • /
    • pp.159-170
    • /
    • 2001
  • 본 연구의 목적은 개방형 교수법에 의한 수업이 수학적 문제해결력과 신념 형성에 미치는 효과를 분석함으로써 수학 교수방법의 개선에 도움을 주는 데 있다. 본 연구를 통하여 얻은 연구 결과는 첫째, 개방형 수업 집단과 일반적 수업 집단간에 문제해결력에 있어서 유의미한 차이가 있었으며, 둘째, 개방형 수업 집단과 일반적 수업 집단간에 수학적 신념에 있어서도 유의미한 차이가 있었다. 본 연구의 결과를 통하여, 개방형 교수법에 의한 수업은 일반적 수업보다 문제해결력 및 수학적 신념 수준을 향상시킬 수 있는 교수법임을 시사한다.

  • PDF

서술형 수학 쓰기 수업이 초등학생의 문제해결 및 수학적 성향에 미치는 효과 (The Effect of Essay Writing-Centered Mathematics Teaching on Problem Solving and Mathematical Disposition)

  • 김효선;오영열
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제28권1호
    • /
    • pp.131-154
    • /
    • 2014
  • 이 연구는 서술형 수학 쓰기 활동이 초등학생의 문제 해결 및 수학적 성향에 미치는 효과를 알아보는데 목적이 있다. 본 연구를 실행하기 위해, 서울B초등학교 6학년 학급에 문제 해결력 및 수학적 성향 검사를 실시하여 동질성을 가지는 두 개의 학급을 선정하였으며, 실험집단에는 서술형 수학 쓰기 활동 수업을 실시하였으며, 비교집단에는 교과서 및 교사용 지도서 중심의 일반적인 수업을 실시하였다. 실험처치는 약 두 달 동안 15회에 걸쳐 실시하였고, 서술형 수학 쓰기 활동의 효과를 알아보기 위해 문제 해결력 검사를 실시하여 두 집단 간 성취도를 t-test로 분석하였으며, 검사지에 나타난 학생들의 서술 내용을 분석하여 문제 해결 과정에서 나타난 특징을 알아보았다. 또한 수학적 성향 검사를 실시하고 그 결과를 독립표본 t-test로 분석하였으며, 서술형 평가에 대한 성향을 묻는 설문조사를 실시하고 학생들의 반응을 분석하였다. 본 연구 결과, 서술형 수학 쓰기 활동은 학생들의 문제 해결력과 문제해결과정, 수학적 성향에 긍정적인 영향을 미치는 것으로 나타났으며, 또한 서술형 평가에 대한 학생들의 인식이 개선된 것으로 나타났다.

벡터를 이용한 삼각형의 무게중심에 관한 정리 증명에 관련된 탐구 능력 추출

  • 한인기
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제13권1호
    • /
    • pp.305-316
    • /
    • 2002
  • 벡터는 수학 문제해결을 위한 중요한 도구로써, 벡터를 이용한 문제해결 과정에서 학생들은 수학적 탐구 활동에 관련된 풍부한 경험을 가질 수 있다. 본 연구에서는 벡터를 이용하여 삼각형의 무게중심에 관한 정리를 증명하기 위한 수학적 탐구 능력이나 아이디어를 학생들이 준비할 수 있도록 정리 증명과 관련된 몇몇 문제들을 체계화하여 제시하였다. 이 문제들을 해결하는 과정에 관련된 탐구 능력을 추출하였으며, 체계화된 문제에 바탕을 둔 무게중심에 관한 정리 증명을 제시하였고, 증명 과정과 관련된 수학적 탐구 능력을 제시하였다.

  • PDF

4학년 아동들의 수학적 문제설정 활동의 효과

  • 조제호;신인선
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제8권
    • /
    • pp.121-135
    • /
    • 1999
  • 본 연구는 초등학교 수학의 연산 영역에 있어서, 문제설정활동의 두 가지 방법(문제꾸미기, 문제만들기) 중 어느 방법이 4학년 아동의 수학적 문제해결력에 더 효과적인지 알아보고, 아동의 학습능력수준과 성별에 따라 수학적 문제해결력의 신장에 더 유용한 문제설정방법을 찾아보는데 그 목적이 있었다. 그 결과 '문제꾸미기'에 의한 문제설정방법이 학습 수준이 상 ${\cdot}$중위 집단에서 유용한 방법이며, 문제해결력 요소 중 문제구성력과 전략적용력을 신장시킬 수 있다는 방법이라는 것을 알 수 있었고 남녀성별에 따른 유의미한 차이는 없었다. 이런 연구 결과로 주어진 문제를 조건과 내용을 바꾸는 다소 쉬운 문제설정 방법보다는 어떤 상황만 제시하고 그 상황 속에서 문제를 만들어보는 문제꾸미기의 문제설정 방법이 문제해결력의 신장에 도움이 됨을 알 수 있었다.

  • PDF

종횡비교분석을 통한 초등학교 수학의 문제해결에 대한 검토 (Study on Problem Solving in Elementary School Mathematics through Comparative Analysis)

  • 장혜원
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제19권2호
    • /
    • pp.207-231
    • /
    • 2009
  • 본 연구의 목적은 수학교육에서 문제해결이 교육 목표, 교육 내용, 교수 방법 등으로 강조된 지 사반세기가 지나온 현 시점에서 우리나라 초등학교 수학에서 문제해결 교육을 검토하는 것이다. 이를 위해, 수학교육에서 문제 및 문제해결의 의미에 대해 재검토하고 우리나라 역대 교육과정 속에 포함된 문제해결 관련 내용의 변화를 통한 종적 비교 분석 및 국가 차원의 교육 과정이 마련된 싱가포르, 영국, 일본, 프랑스의 교육과정에 대한 횡적 비교 분석을 통해 열 개의 체를 도출함으로써 그 체를 이용하여 제7차 교육과정에 따른 수학 교과서를 분석하였다. 그 결과, 우리나라 초등학교 수학에서 문제해결은 매우 적극적 의미로 다루어짐을 확인할 수 있었고, 앞으로의 문제해결 교육과 관련한 몇 가지 시사점을 얻을 수 있었다.

  • PDF

수학적 창의성의 개념

  • 유윤재
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권3호통권20호
    • /
    • pp.81-94
    • /
    • 2004
  • 수학적 창의성의 개념을 과정적 정의로서 창의적 문제해결력으로 규정하여 수학적 영재의 판별을 문제 발견의 창의성과 문제해결의 창의성으로 나누고 각각에 대한 판별검사 도구에 대하여 논의하였다.

  • PDF