• Title/Summary/Keyword: 수학실험도구

Search Result 60, Processing Time 0.021 seconds

An analysis of the use of technology tools in high school mathematics textbooks based (고등학교 수학 교과서의 공학 도구 활용 현황 분석)

  • Oh, Se Jun
    • Communications of Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.263-286
    • /
    • 2024
  • With the introduction of AI digital textbooks, interest in the use of technology tools in mathematics education is increasing. Technology tools have the advantage of visualizing mathematical concepts and discovering mathematical principles through experimentation and inquiry. The 2015 revised mathematics curriculum in Korea already mentions the use of technology tools, and accordingly, various teaching and learning activities using technology tools are presented in mathematics textbooks. However, there is still a lack of systematic analysis on the types and utilization methods of technology tools presented in textbooks. Therefore, this study analyzed the current status of the use of technology tools presented in high school mathematics textbooks based on the 2015 revised curriculum. To this end, the types of technology tools presented in mathematics textbooks were categorized, and the utilization ratio of each category was investigated. In addition, the utilization patterns of technology tools were analyzed by subject and content area, and the utilization ratio of technology tools according to the type of teaching and learning activities was examined. The results showed that technology tools were used in various types and ratios according to the subject and content area. In particular, technology tools in the symbol-manipulation graphing software category accounted for 58% of the total usage cases, showing the highest proportion. By subject, the use of symbol-manipulation graphing software was prominent in subjects dealing with the analysis area, while the use of dynamic geometry software was relatively high in the geometry area. In terms of teaching and learning activity types, the utilization ratio of auxiliary tool type (49%) and intended inquiry induction type (37%) was high. The results of this study show that technology tools play various roles in mathematics textbooks and provide useful implications for improving mathematics teaching and learning methods using technology tools in the future. Furthermore, it can contribute to the establishment of educational policies related to AI digital textbooks and the development of teacher training programs.

Design-Experiment Research in Mathematics Education (수학교육 연구에서 설계-실험)

  • Chung , Chy-Bong
    • Journal of the Korean School Mathematics Society
    • /
    • v.7 no.2
    • /
    • pp.67-79
    • /
    • 2004
  • Researchers in education intend and aspire to improve education practice. Researches should provide practical knowledge, instruments, teaching/learning skills which are needed in real educational environments. Research should closely related to practice. Design-experiment researches intend to promote and help education innovation. A variety of design experiment researches are presented with their characteristics, methods, goals, principles, case studies, prospects.

  • PDF

Utilizing Calculators as Cognitive Tool in the Elementary School Mathematics (인지적 도구로서의 사칙계산기 활용)

  • Lee, Hwa Young;Chang, Kyung Yoon
    • School Mathematics
    • /
    • v.17 no.2
    • /
    • pp.157-178
    • /
    • 2015
  • The purpose of this study was to investigate the role of calculators as a cognitive tool rather than calculating tool in learning elementary school mathematics. The calculator activities on multiplying two numbers ending with 0s or two decimal fractions and mixed four operations were developed, and exploratory lessons with the activities were implemented to three 3rd graders and two 5th graders. The results were shown that calculators provided an alternative effective learning environment: students were able to use heuristic thinking, reason inductively and successfully investigate principles of mathematics through the pattern recognition. And finally, we discussed the heuristic method through utilizing calculators.

The Effects of the Mathematics Study based RME Theory with Virtual Operation Tools on Spatial Sense and Mathematical Attitudes in Elementary School (가상조작 도구를 활용한 RME기반 수학학습이 초등학생의 공간감각 및 수학적 태도에 미치는 효과)

  • Son, Tae Kwon;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.4
    • /
    • pp.737-760
    • /
    • 2016
  • This study analyzed the 2009 revised curriculum 6th grade math geometric domain and developed virtual operation tool contents based RME theory. These materials were examine to find out how to effect on the spatial sense and mathematical attitudes by applying it to teach the 6th grade students. The results were as follows. First, it is more effective for improving spatial sense to study mathematics based RME theory with virtual operation tool contents than normal one. This means that mathematics study based RME theory with virtual operation contents overcomes the limitations of flat learning environment. And it is great educational and effective method for students to improve their spatial sense. Second, it is more effective for improving mathematical attitudes to study mathematics based RME theory with virtual operation tool contents than normal one. This means that Mathematics study based RME theory with virtual operation contents makes student more participate learning actively. It helps the students who have passive learning habits to have self-directed learning habits, ability to cooperation and communicate. The results of this study suggest that mathematics study based RME theory is very helpful for student to improve their spatial sense and have positive effect on self-concept in mathematics, attitudes toward mathematics and improving study habits in mathematical attitudes.

Exploration of the Composite Properties of Linear Functions from Instrumental Genesis of CAS and Mathematical Knowledge Discovery (CAS의 도구발생과 수학 지식의 발견 관점에서 고찰한 일차함수의 합성 성질 탐구)

  • Kim, Jin-Hwan;Cho, Cheong-Soo
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.611-626
    • /
    • 2010
  • The purpose of this study is to explore the composite properties of linear functions using CAS calculators. The meaning and processes in which technological tools such as CAS calculators generated to instrument are reviewed. Other theoretical topic is the design of an exploring model of observing-conjecturing-reasoning and proving using CAS on experimental mathematics. Based on these background, the researchers analyzed the properties of the family of composite functions of linear functions. From analysis, instrumental capacity of CAS such as graphing, table generation and symbolic manipulation is a meaningful tool for this exploration. The result of this study identified that CAS as a mediator of mathematical activity takes part of major role of changing new ways of teaching and learning school mathematics.

Analysis on Mathematically Gifted Middle School Students' Characteristic of Mathematical Thinking and Verbal Expression in the Study of Parallel Lines in Non-Euclidean Disc Model using Dynamic Geometry Software (GSP를 사용한 비유클리드 원판모델 학습에서 나타난 중학교 수학 영재들의 평행선에 관한 인식 및 언어 표현 방식 분석)

  • Hong, Seong Kowan
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.1
    • /
    • pp.53-74
    • /
    • 2013
  • The purpose of this paper is to analyze how mathematically gifted middle school students find out the necessary and sufficient condition for a certain hyperbolic line to be parallel to a given hyperbolic line in Non-Euclidean disc model (Poincar$\acute{e}$ disc model) using the Geometer's Sketchpad. We also investigated their characteristic of mathematical thinking and analyze how they express what they had observed while they did mental experiments in the Poincar$\acute{e}$ disc using computer-aided construction tools, measurement tools and inductive reasoning.

  • PDF

A Study on the Function Education of Middle School Using the Technical Instruments (중학교 1학년 함수지도에서의 공학적 도구 활용에 관한 연구)

  • Chu, Soon-Jong;Kim, Yung-Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.3
    • /
    • pp.189-209
    • /
    • 2009
  • One of the characteristics in math -abstract concept- makes the students find difficulties in understanding general ideas about math. This study is about how much do the modeling lessons using the technical instruments which is based on the realistic mathematical theory influence on understanding the mathematical concept. This study is based on one of the contents the first grade of middle school students study, the function, especially the meaning of it. Some brilliant students being the objects of this study, mathematically experimental modeling lesson was planned, conducted. Survey on the students' attitudes about math before and after the modeling classes and Questionnaire survey on the effectiveness about the modeling class were conducted and their attitudes were recorded also. This study tells that students show very meaningful changes before and after the modeling class and scientific knowledge seems to be very helpful for the students to understand the mathematical concept and solve the problems. When scientific research and development get together with mathematics, students will be more motivated and be able to form the right mathematical concept easily.

  • PDF

How Could a Proof Be Constructed into a Narrative? Focused on Function Translations (증명이 어떻게 내러티브가 될 수 있는가? -함수의 평행이동에 대한 사례연구-)

  • Lee, Ji-Hyun;Lee, Gi-Don;Lee, Gyu-Hee;Kim, Gun-Uk;Choi, Young-Gi
    • School Mathematics
    • /
    • v.14 no.3
    • /
    • pp.297-313
    • /
    • 2012
  • The purpose of this paper is to discuss the potential and to examine the effect of narrative, as an alternative approach to teach formal proof in more easier and comprehensible way. Identifying the key elements of narrative in proof, we constructed a narrative that derives the equation of function translation. We examined the effect of teaching through the narrative, in comparison with teaching the corresponding proof, on low-achieving students' instrumental understanding and relational understanding of function translation. Since we found no statistically significant differences between the experimental and the comparison group, this study could not conclude that teaching through the narrative was more effective than teaching the corresponding proof. But there were some qualitative differences in the relational understanding responses and the evaluation of the teaching between two groups. These findings suggested some potential of narratives that complement the formal proof.

  • PDF

Developing the Mathematics Teaching Efficacy Beliefs Instrument Korean Version for Secondary Prospective Mathematics Teachers (중등 예비 수학 교사를 대상으로 하는 MTEBI 한글판 개발)

  • Ryang, Dohyoung
    • The Mathematical Education
    • /
    • v.52 no.2
    • /
    • pp.231-245
    • /
    • 2013
  • MTEBI는 미국에서 초등 예비 교사들의 수학 교수 효능감을 측정하는데 자주 이용되는 척도이다. 이 연구의 목적은 MTEBI를 한국의 중등 예비 교사들에게 사용하는 것이 적합한지를 탐색하는 것이었다. 이를 위하여, 미국에 있는 대학원에 다니며 영어와 국어 둘 다 말할 수 있는 박사 학생 두 명이 MTEBI를 브리슬린의 이론대로 국문으로 번역하였고, 그 뒤에 한국에 있는 다수의 수학 교사 교육자들이 번역된 척도를 면밀하게 검토하였다. 한글판 척도를 먼저 작은 표본에서 초벌 실험하였는데, 두 개 문항이 도구의 신뢰도와 타당도를 현저하게 떨어뜨렸다. 본 연구에서는 이 두 개의 유용하지 못한 문항을 대신할 두 개 문항을 더한 23개 문항으로 구성된 척도에 대하여 정규성, 신뢰도, 요인 타당도 등을 658명의 표본에서 검사하였다. 초벌 연구에서 발견된 두 개의 유효하지 않는 문항은 본 연구에서도 역시 그와 같아서, 그 두 문항은 척도에서 제거되었다. 최종적으로 얻어진 21 문항 척도는 한국의 예비 수학 교사들의 수학 교수 효능감을 측정하는데 적합한 척도이다. 앞으로, MTEBI 한글판을 이용하여 한국에서 교사 효능감에 대한 연구가 활발하게 일어나기를 기대한다.

Review of the Role of Dragging in Dynamic Geometry Environments (역동기하 환경에서 "끌기(dragging)"의 역할에 대한 고찰)

  • Cho, Cheong Soo;Lee, Eun Suk
    • School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.481-501
    • /
    • 2013
  • The purpose of this study is to review the role of dragging in dynamic geometry environments. Dragging is a kind of dynamic representations that dynamically change geometric figures and enable to search invariances of figures and relationships among them. In this study dragging in dynamic geometry environments is divided by three perspectives: dynamic representations, instrumented actions, and affordance. Following this review, six conclusions are suggested for future research and for teaching and learning geometry in school geometry as well: students' epistemological change of basic geometry concepts by dragging, the possibilities to converting paper-and-pencil geometry into experimental mathematics, the role of dragging between conjecturing and proving, geometry learning process according to the instrumental genesis perspective, patterns of communication or discourse generated by dragging, and the role of measuring function as an affordance of DGS.

  • PDF