• Title/Summary/Keyword: 수학문제 해결력

Search Result 251, Processing Time 0.022 seconds

Analysis of Strategies for Problem Solving Presented in Elementary School Mathematics Textbooks (초등학교 수학교과서에 나타난 문제해결 전략의 양식에 대한 분석)

  • Kim, Jin Ho
    • School Mathematics
    • /
    • v.4 no.4
    • /
    • pp.565-580
    • /
    • 2002
  • 연구자들은 학생들에게 문제해결 전략을 지도하는 것이 학생들의 문제해결력을 신장시켜 준다는 보고하고 있다. 이와 같은 연구결과를 배경으로 수학 교과서를 통하여 문제해결 전략을 지도하려는 시도들이 미국을 비롯하여 한국에서도 있어 왔다. 본 논문은 문제해결 전략을 교과서에 제시할 수 있는 가능한 세 가지 모델들을 논의하고, 미국과 한국의 수학교과서에서 문제해결 전략을 제시하는 방법을 분석하였다. 한 가지 모델은 문제해결 전략에 한 단원을 할애하는 것이다. 두 번째 모델은 각 수학내용을 지도하는 단원에 문제해결 전략의 지도를 위한 하위단원을 할당하는 것이다. 마지막, 세 번째 모델은 문제해결 전략 지도를 위한 특정 단원이나 하위 단원을 설정하는 것이 아니라 가능한 많은 쪽에 전략을 제시하는 것이다. 위에 언급한 세 가지 가능한 모델을 바탕으로 미국과 한국의 초등학교 수학교과서에서 문제해결 전략을 제시하는 양상을 비교하였다. 이 비교를 위하여 각 학년별로 제시되는 모든 전략들을 교과서와 교사용 지도서를 토대로 추출하였다. 각 교과서에서 전략을 제시한 양식을 비교한 결과 다음과 같은 결론을 얻게 되었다. 한국의 수학교과서는 전형적으로 첫 번째 모델의 양식으로 문제해결전략을 제시하고 있었다. 각 단원마다 별개의 문제해결 전략이 제시되었다. 또한, 학년별 지도 전략을 살펴보면 학년별로 연계성이 있게 전략이 제시 되었다기 보다는 학년별로 다른 다양한 전자의 지도에 중점을 둔 듯하다. 미국의 수학교과서는 두 번째 모델과 세 번째 모델의 중간적인 양식으로 문제해결 전략을 제시하고 있다. 즉, 각 단원마다 문제해결 전략 지도를 위한 하위 단원을 지정하였으며 필요한 경우에는 본 단원의 주 학습요소와 관련된 문제해결 전략은 단원 중에도 제시되고 있었다. 따라서, 차기 수학교과서 개정시기에는 세 번째 모델을 그 모형으로 삼아 문제해결 전략들을 제시하는 방안을 강구해야 할 것으로 기대된다.

  • PDF

수학적 모델링을 통한 학습지도

  • Lee, Gi-Yeol;Lee, Byeong-Su
    • Communications of Mathematical Education
    • /
    • v.9
    • /
    • pp.187-201
    • /
    • 1999
  • 본 논문에서는 사회적 구성주의(social constructivism) 관점에서 고등학교 수준에서의 수학적 모델링 (mathematical modelling) 자료를 개발, 적용, 활용함으로써 학교수학과 실생활 문제를 관련시켜 학생 스스로 관찰 ${\cdot}$ 해석 ${\cdot}$ 사고 ${\cdot}$ 분석하여 구조화하는 고차원적인 인지능력의 형성과 문제 해결력을 배양할 수 있는 학습방법을 고찰한다.

  • PDF

The Effect of Geometry Learning through Spatial Reasoning Activities on Mathematical Problem Solving Ability and Mathematical Attitude (공간추론활동을 통한 기하학습이 수학적 문제해결력과 수학적 태도에 미치는 효과)

  • Shin, Keun-Mi;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.401-420
    • /
    • 2010
  • The purpose of this research is to find out effectiveness of geometry learning through spatial reasoning activities on mathematical problem solving ability and mathematical attitude. In order to proof this research problem, the controlled experiment was done on two groups of 6th graders in N elementary school; one group went through the geometry learning style through spatial reasoning activities, and the other group went through the general geometry learning style. As a result, the experimental group and the comparing group on mathematical problem solving ability have statistically meaningful difference. However, the experimental group and the comparing group have not statistically meaningful difference on mathematical attitude. But the mathematical attitude in the experimental group has improved clearly after all the process of experiment. With these results we came up with this conclusion. First, the geometry learning through spatial reasoning activities enhances the ability of analyzing, spatial sensibility and logical ability, which is effective in increasing the mathematical problem solving ability. Second, the geometry learning through spatial reasoning activities enhances confidence in problem solving and an interest in mathematics, which has a positive influence on the mathematical attitude.

  • PDF

Third grade students' fraction concept learning based on Lesh translation model (Lesh 표상 변환(translation) 모델을 적용한 3학년 학생들의 분수개념 학습)

  • Han, Hye-Sook
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.129-144
    • /
    • 2009
  • The purpose of the study was to investigate the effects of the use of RNP curriculum based on Lesh translation model on third grade students' understandings of fraction concepts and problem solving ability. Students' conceptual understandings of fractions and problem solving ability were improved by the use of the curriculum. Various manipulative experiences and translation processes between and among representations facilitated students' conceptual understandings of fractions and contributed to the development of problem solving strategies. Expecially, in problem situations including fraction ordering which was not covered during the study, mental images of fractions constructed by the experiences with manipulatives played a central role as a problem solving strategy.

  • PDF

A Study on the Improvement of Problem-solving in Elementary Mathematics Textbooks - Focusing on Polya's Problem Solving - (초등 수학 교과서에서 문제해결 지도의 개선점과 개선 방향 -Polya의 문제해결을 중심으로-)

  • Ahn, Byounggon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.4
    • /
    • pp.405-425
    • /
    • 2018
  • Increasing the problem solving power in school mathematics is the most important task of mathematics education. It is the ultimate goal of mathematics education to help students develop their thinking and creativity and help solve problems that arise in the real world. In this study, we investigated the contents of problem solving according to mathematics curriculum goals from the first curriculum to current curriculum in Korea. This study analyzed the problem-solving contents of the mathematics textbooks reflecting the achievement criteria of the revised curriculum in 2015. As a result, it was the first curriculum to use the terminology of problem solving in the mathematics goal of Korea's curriculum. Interest in problem solving was most actively pursued in the 6th and 7th curriculum and the 2006 revision curriculum. After that, it was neglected to be reflected in textbooks since the 2009 revision curriculum, We have identified the problems of this problem-solving instruction and suggested improvement direction.

  • PDF

The Effect of Mathematics Classes Using AlgeoMath on Mathematical Problem-Solving Ability and Mathematical Attitude: Focusing on the 'Cuboid' Unit of the Fifth Grade in Elementary School (알지오매스 기반 수업이 수학적 문제해결력 및 태도에 미치는 효과: 초등학교 5학년 '직육면체' 단원을 중심으로)

  • Seung Dong Lee;Jong Hak Lee
    • Journal of Science Education
    • /
    • v.48 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • The purpose of this study is to investigate the effects of classes using AlgeoMath on fifth grade elementary students' mathematical problem-solving skills and mathematical attitudes. For this purpose, the 'cuboid' section of the 5th grade elementary textbook based on AlgeoMath was reorganized. A total of 8 experimental classes were conducted using this teaching and learning material. And the quantitative data collected before and after the experimental lesson were statistically analyzed. In addition, by presenting instances of experimental lessons using AlgeoMath, we investigated the effectiveness and reality of classes using engineering in terms of mathematical problem-solving ability and attitude. The results of this study are as follows. First, in the mathematical problem-solving ability test, there was a significant difference between the experimental group and the comparison group at the significance level. In other words, lessons using AlgeoMath were found to be effective in increasing mathematical problem-solving skills. Second, in the mathematical attitude test, there was no significant difference between the experimental group and the comparison group at the significance level. However, the average score of the experimental group was found to be higher than that of the comparison group for all sub-elements of mathematical attitude.

Polya의 문제해결 전략을 이용한 효과적인 문장제 지도방안 -고등학교 중심-

  • Bang, Seung-Jin;Lee, Sang-Won
    • Communications of Mathematical Education
    • /
    • v.8
    • /
    • pp.209-229
    • /
    • 1999
  • 보통 문장제(거리 ${\cdot}$ 속도 문제, 시계 문제, 농도 문제, 개수 세기, 측도 영역)는 초등학교부터 반복하면서 대학수학능력 시험에서는 외적 문제해결력을 측정하는 문장으로 나타난다. 문장제를 해결하는데는 사고가 여러 단계로 이루어져야 한다. 따라서 일반적으로 문장제는 난해하므로 조직적이고 전문적인 학습지도가 이루어져야 한다. 하지만 입시위주의 교육 등 여러 여건상 잘 이루어지지 않고 있는 것이 현실이다. 수학을 잘하는 학생이라도 문장제를 해결하지 못하는 경우가 많다. 본 연구에서는 문장제의 해결의 저해 요인을 완화시킬 수 있는 지도 방안으로서 Polya의 문제해결 전략을 이용하며, 실험반과 비교반의 학습 효과를 비교 분석하여 이를 통하여 효율적인 문장제 지도방안을 연구한다.

  • PDF