• Title/Summary/Keyword: 빔-스프링 모델

Search Result 18, Processing Time 0.026 seconds

Development of beam-spring model to analyse the stability of double-deck tunnel (복층터널 안정성 분석을 위한 빔-스프링 모델 개발)

  • Lee, Sang-Hyun;An, Joon-Sang;Kang, Kyung-Nam;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.301-317
    • /
    • 2017
  • In this study, as an initial study for development of stability analysis program of a double-deck tunnel during life cycle, a structural analysis solver based beam-spring model for the double-deck tunnel is constructed. Effect of parameters(slab supporting type, depth of the tunnel and ground elastic modulus) is analyzed with the beam-spring model. The model is also compared and verified by commercial structural analysis program. It is considered that the slab supporting type affects the integrated behavior with segment lining and influence of intermediate slab on the stability of the tunnel decreases as the tunnel depth increases. The relationship between the ground elastic modulus and the effect of the intermediate slab on the segment lining needs further investigation.

A study on the factors influencing the segment lining design solved by beam-spring model in the shield tunnel (쉴드 터널 세그먼트 라이닝 설계에서 빔-스프링 구조 모델이 단면력에 미치는 영향)

  • Kim, Hong-moon;Kim, Hyun-su;Shim, Kyung-mi;Ahn, Sung-youll
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.179-194
    • /
    • 2017
  • The segment lining design for shield tunnel is generally carried out by using the beam-spring model and the induced member forces from the model are strongly influenced by the components of the model such as imposed load, coefficient of subgrade reaction, location of segment joint and its stiffness. The structural models and stiffness of its connection part found used in abroad design cases is usually obtained as it is for the domestic design of segment of shield tunnel. Those models and stiffness in existing design cases are conventionally applied to a new tunnel design without any suitability review for the project. In this study, the application method of base components of the model such as the coefficient of subgrade reaction and modelling method to the segment lining design was suggested by carrying out the comparative study of the base elements for the member forces estimation of segment lining of shield tunnel.

Modeling and Vibration Analysis of Vehicle Structures Using Equivalent Beam Stiffness for Joint (조인트 등가빔을 이용한 저진동 차체 모델링 및 해석기법)

  • 임홍재;김윤영;이상범;송명의
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.40-44
    • /
    • 1995
  • 본 논문에서는 결합부의 강성도를 나타내기 위해 그동안 사용되어 오던 기존의 스프링 모델을 사용하는 대신 등가빔 조인트 모델을 차체의 유한요소모델에 적용하여 보았으며 차체의 기본 진동 모드 해석을 통해 그 타당성을 검증하여 보았다. 특히 본 연구를 통해 차체 설계시 특정 결합부 강성도를 효율적으로 결정할 수 있는 방법의 개발이 가능해졌으며 그 방법의 개발을 위해 현재 계속 연구가 진행되고 있음을 밝힌다.

  • PDF

Static and Dynamic Analysis of Flexible Media Using Spring-Mass-Beam Model (스프링-매스-빔 모델을 이용한 유연매체의 정.동적 거동해석)

  • 지중근;정진우;홍성권;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.906-911
    • /
    • 2004
  • In the development of sheet-handling machinery, it is important to be able to predict the italic and dynamic behavior of the sheets with a high degree of reliability because the sheets are fed and stacked at such a high speed. In this paper, a spring-mass-beam model is introduced. This model consists of rotational springs, shear springs and masses. The formulations for static and dynamic behavior of sheets are introduced. And some simulations are presented for static and dynamic cases.

  • PDF

A study on the vibration characteristics of multispan beams (멀티스팬 빔의 진동특성에 관한 연구)

  • 홍진선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.420-425
    • /
    • 1997
  • 본 연구에서는 병진 스프링과 회전 스프링으로 동시에 지지되어 있으며 다수의 집중질량과 회전관성이 결합된 멀티스팬빔의 무차원 설계변수에 따른 진동특성의 엄밀해를 빠른 계산속도로 해석할 수 있는 이론적 진동해석 방법을 제시하였다. 그리고, 지금까지 연구되어 온 여러 가지 해석모델에 적용하여 본 연구에서 이용한 해석기법의 타당성을 검증하였다.

  • PDF

Modeling and Verification of Multibody Dynamics Model of Military Vehicle Using Measured Data (실차 측정 정보를 이용한 군용 차량의 다물체 동역학 모델링 및 검증)

  • Ryu, Chi Young;Jang, Jin Seok;Yoo, Wan Suk;Cho, Jin Woo;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1231-1237
    • /
    • 2014
  • It is essential to perform driving performance tests of military vehicles on rough terrain. A full car test is limited by cost and time constraints, because of which a dynamic analysis via computer simulation is preferred. In this study, a vehicle model is developed using MSC.ADAMS, a commercial multibody analysis program, and compared via experiments. FTire is modeled using the results of a tire performance test to obtain the vertical stiffness. A nonlinear damper is modeled by a characteristic experiment. Leaf springs are modeled with beam force elements and consisted to a vehicle model. The vertical force and acceleration response of the wheel are identified when vehicle is passing over a simple bump as well as a sinusoidal road. The developed vehicle model is verified with the results of a full car test.

Fabrication and driving experiment of 2.4mm size mirror for optical pick-up head (광기록 장치의 픽업헤드용 2.4mm 크기의 미러의 제작과 구동실험)

  • Park, Keun-Woo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2266-2268
    • /
    • 2000
  • 본 논문에서는 스캐닝 미러의 일종으로, 광저장 장치의 픽업헤드용으로 미세회전을 하면서 레이저 빔을 편향시키는 용도로 사용되는 미러를 제작하고 구동실험을 하였다. 제작된 미러의 크기는 $2400{\times}2400{\times}64{\mu}m^3$이고, 빔 스프링은 $500{\times}9.6{\times}64{\mu}m^3$이다. 니켈 전해 도금으로 29${\mu}m$ 높이의 구동 전극을 제작하였고(세가지 모델: 공기통로가 없는 전극, 공기통로와 간격이 각각 200${\mu}m$인 전극, 공기통로와 간격이 각각 100${\mu}m$인 전극), 미러판과 전극을 조립하여(미러판과 전극 사이의 간격은 각각 29${\mu}m$, 26${\mu}m$, 26${\mu}m$) 구동실험을 하였다. 공진 주파수의 계산간은 576Hz, 측정값은 3개의 미러에서 모두 568Hz이었다. 전극과 미러판의 간격이 최대 접근거리 18${\mu}m$가 되도록 미세 회전을 시켰을 때, 공기통로가 없는 전극에서는 공진 주파수가 524Hz, 공기통로가 200${\mu}m$인 전극에서는 544Hz로 각각 감쇠되었고, 공기통로가 100${\mu}m$인 전극에서는 그대로 568Hz이었다.

  • PDF

Dynamic response of segment lining due to train-induced vibration (세그먼트 라이닝의 열차 진동하중에 대한 동적 응답특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.305-330
    • /
    • 2023
  • Unlike NATM tunnels, Shield TBM tunnels have split linings. Therefore, the stress distribution of the lining is different even if the lining is under the same load. Representative methods for analyzing the stress generated in lining in Shield TBM tunnels include Non-joint Mode that does not consider connections and a 2-ring beam-spring model that considers ring-to-ring joints and segment connections. This study is an analysis method by Break-joint Mode. However, we do not consider the structural role of segment lining connections. The effectiveness of the modeling is verified by analyzing behavioral characteristics against vibration loads by modeling with segment connection interfaces to which vertical stiffness and shear stiffness, which are friction components, are applied. Unlike the Non-joint mode, where the greatest stress occurs on the crown for static loads such as earth pressure, the stress distribution caused by contact between segment lining and friction stiffness produced the smallest stress in the crown key segment where segment connections were concentrated. The stress distribution was clearly distinguished based on segment connections. The results of static analysis by earth pressure, etc., produced up to seven times the stress generated in Non-joint mode compared to the stress generated by Break-joint Mode. This result is consistent with the stress distribution pattern of the 2-ring beam-spring model. However, as for the stress value for the train vibration load, the stress of Break-joint Mode was greater than that of Non-joint mode. This is a different result from the static mechanics concept that a segment ring consisting of a combination of short members is integrated in the circumferential direction, resulting in a smaller stress than Non-joint mode with a relatively longer member length.

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF

An Analysis of the Springing Phenomenon of a Ship Advancing in Waves (파랑 중에 전진하는 선박에 대한 스프링잉 현상 해석)

  • H.Y. Lee;H. Shin;H.S. Park;J.H. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.41-46
    • /
    • 2001
  • The very large vessels like VLCC and container ship have been built recently and those vessels have smaller structural strength in comparison with the other convectional skips. As a result the fatigue destruction of upper deck occurs a frequently due to the springing phenomenon at the encountering frequencies. In this study, the hydrodynamic loads are calculated by three-dimensional source distribution method with the translating and pulsating Green function. A ship is longitudinally divided into 23 sections and the added mass, damping and hydrodynamic force of each section is calculated. focusing only on the vertical motion. Stiffness matrix is calculated by the Euler beam theory. The calculation is carried out for Esso Osaka.

  • PDF