• Title/Summary/Keyword: 비선형 운동

Search Result 622, Processing Time 0.026 seconds

Seismic Fragility Curves for Multi-Span Concrete Bridges (다경간 콘크리트 교량의 지진 취약도)

  • Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.35-47
    • /
    • 2003
  • Seismic ground motion can vary significantly over distances comparable to the length of a majority of highway bridges on multiple supports. This paper presents results of fragility analysis of two actual highway bridges under ground motion with spatial variation. Ground motion time histories are artificially generated with different amplitudes, phases, as well as frequency contents at different support locations. Monte Carlo simulation is performed to study dynamic responses of the bridges under these ground motions. The effect of spatial variation on the seismic response is systematically examined and the resulting fragility curves are compared with those under identical support ground motion. This study shows that ductility demands for the bridge columns can be underestimated if the bridge is analyzed using identical support ground motions rather than differential support ground motions. Fragility curves are developed as functions of different measures of ground motion intensity including peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(SA), spectral velocity(SV) and spectral intensity(SI). This study represents a first attempt to develop fragility curves under spatially varying ground motion and provides information useful for improvement of the current seismic design codes so as to account for the effects of spatial variation in the seismic design of long-span bridges.

Dynamic Characteristics of Linear Motion Supported by Rolling Ball Bearings (볼 베어링을 사용하는 선형 운동 가이드의 동적 특성)

  • Choi Jae Seok;Yi Yong-sub;Kim Yoon Young;Lee Dong Jin;Lee Sung Jin;Yoo Jeonghoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.868-876
    • /
    • 2004
  • The linear motion(LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been widely used to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analyses. Linear analysis is accomplished by Lagrange equation and the finite element method. And another trial that performs nonlinear analysis about one mode(bouncing mode) of LM guide from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

Nonlinear Analysis of a Forced Beam with Internal Resonances (내부공진을 가진 보의 비선형 강제진동해석)

  • 이원경;소강영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.147-152
    • /
    • 1991
  • 양단이 고정된 보가 변형할 때에는 중간 평면의 신장을 수반하게 된다. 운동 의 진폭이 증가함에 따라 이 신장이 보의 동적 응답에 미치는 영향은 심각 하게 된다. 이러한 현상은 응력과 변형도와의 관계가 선형적이라 하더라도 변형도와 변위와의 관계식은 비선형이 되며 결국은 보의 비선형 운동방정식 을 낳게된다. 보는 연속계이긴하지만 근사를 위하여 다자유도계로 간주할 수 있다. 비선형 다자유도계에 있어서는 선형화된 계의 고유진동수끼리 적절한 관계를 가질 때 내부공진이 발생할 수 있다. 양단이 고정된 곧은 보의 비선 형 동적응답이 그동안 많이 연구되어 오고 있으며, 집중질량을 가지고 직각 으로 굽은 보의 해석을 위하여 내부공진을 고려한 해석적 혹은 실험적 연구 가 이루어져 왔다. 그중에서도 Nayfeh등은 조화가진 하의 핀과 꺾쇠로 고정 된(hinged-clamped) 보의 정상상태응답을 해석하기 위해 두 모우드 사이의 내부공진을 고려하였다. 이 연구에서는 세 모우드 사이의 내부공진을 고려하 여 강제진행 중인 보의 비선형 해석을 다루고자 한다. 이 문제에 관심을 갖 게 된 동기는 "연속계의 비선형 해석에서 더 많은 모우드를 포함시키면 어 떤 결과를 낳게 될 것인가\ulcorner"라는 질문에서 생겨난 것이다. 갤러킨 법을 이용 하여 비선형 편미분 방정식과 경계 조건으로 표현되는 이 문제를 연립 비선 형 상미분 방정식으로 변환한다. 다중시간법(the method of multiple scales) 을 이용하여 이 상미분 방정식을 정상상태에서의 세 모우드의 진폭과 위상 에 대한 연립비선형 대수방정식으로 변환한다. 이 대수방정식을 수치적으로 풀어서 정상상태 응답을 구하고 Nayfeh등의 결과와 비교한다. 결과와 비교한다. studies, the origin of ${\alpha}$$_1$peak was attributed to the detrapping process form trap with 2.88[eV] deep of injected space charge from the chathode in the crystaline regions. The origin of ${\alpha}$$_2$ peak was regarded as the detrapping process of ions trapped with 0.9[eV] deep originated from impurity-ion remained in the specimen during production process of the material, in the crystalline regions. The origin of ${\beta}$ peak was concluded to be due to the depolarization process of "C=0"dipole with the activation energy of 0.75[eV] in the amorphous regions. The origin of ${\gamma}$ peak was responsible to the process combined with the depolarization of "CH$_3$", chain segment, with the activation energy of carriers from the shallow trap with 0.4[eV], in he amorp

  • PDF

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • 김나은;현상학;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

Nonlinear Dynamic Modeling and Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass (축방향 왕복 운동을 하는 집중 질량을 가진 외팔보의 비선형 동적 모델링 및 안정성 해석)

  • 홍정환;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.868-874
    • /
    • 2003
  • A nonlinear modeling method for an axially oscillating cantilever beam with a concentrated mass is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. The geometric nonlinear effects of stretching and curvature are considered to accurately predict the frequency response characteristics of the oscillating cantilever beam. The effects of the size and the location of the concentrated mass on the frequency characteristics are investigated. It is found that the dynamic instability is significantly influenced by the two parameters.

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • Kim, Na-Eun;Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.262-267
    • /
    • 2002
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of a axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

  • PDF

Nonlinear Vibration Phenomenon for the Slender Rectangular Cantilever Beam (얇은 직사각형 외팔보의 비선형 진동현상)

  • Park, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1314-1321
    • /
    • 2004
  • The non-linear responses of a slender rectangular cantilever beam subjected to lateral harmonic base-excitation are investigated by the 2-channel FFT analyzer. Both linear and nonlinear behaviors of the cantilever beam are compared with each other. Bending mode, torsional mode, and transverse mode are coupled in such a way that the energy transfer between them are observed. Especially, superharmonic, subharmonic, and chaotic motions which result from the unstable inertia terms in the transverse mode are analyzed by the FFT analyzer The aim is to give the explanations of the route to chaos, i.e., harmonic motion \longrightarrow superharmonic motion \longrightarrow subharmonic motion \longrightarrow chaos.

Nonlinear Modeling and Dynamic Analysis of Flexible Structures Undergoing Overall Motions Employing Mode Approximation Method (모드 근사화 방법을 이용한 대변위 운동을 하는 유연구조물의 비선형 모델링 및 동적해석)

  • Kim, J.Y.;Hyun, S.H.;Yoo, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.550-555
    • /
    • 2001
  • This paper presents a nonlinear modeling method for dynamic analysis of flexible structures undergoing overall motions that employs the mode approximation method. This method, different from the naive nonlinear method that approximates only Cartesian deformation variables, approximates not only deformation variables but also strain variables. Geometric constraint relations between the strain variables and the deformation variables are introduced and incorporated into the formulation. Two numerical examples are solved and the reliability and the accuracy of the proposed formulation are examined through the numerical study.

  • PDF

Dynamic Modeling Method for Beams Undergoing Overall Rigid Body Motion Considering Two Geometric Non-linear Effects (두 기하학적 비선형 효과들을 고려한 대변위 강체운동을 하는 보의 동적 모델링 방법)

  • Kim, Na-Eun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1014-1019
    • /
    • 2003
  • A dynamic modeling method for beams undergoing overall rigid body motion is presented in this paper. Two special deformation variables are introduced to represent the stretching and the curvature and are approximated by the assumed mode method. Geometric constraint equations that relate the two special deformation variables and the cartesian deformation variables are incorporated into the modeling method. By using the special deformation variables, all natural as well as geometric boundary conditions can be satisfied. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response when overall rigid body motion is involved.

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • Kim, Na-Eun;Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.331.2-331
    • /
    • 2002
  • A modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method. Frequency response characteristics are investigated with the modeling method. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the dynamic response. (omitted)

  • PDF