• Title/Summary/Keyword: 미세제조

Search Result 2,469, Processing Time 0.026 seconds

Cycling life prediction method considering compressive residual stress on liner for the filament-wound composite cylinders with metal liner (금속재 라이너를 갖는 복합재 압력용기의 라이너 압축잔류응력을 고려한 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Jeung, Sang-Su;Chung, Jae-Han
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on the liner to improve cycling life can be applied. In this study, a finite element analysis technique is presented, which can predict accurately the compressive residual stress on the liner induced by autofrettage and stress behavior after. Material and geometrical non-linearity is considered in the finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

Synthesis of Nickel Oxide (NiO) nanoparticles using nickel(II) nitrate hexahydrate as a precursor (Nickel(II) nitrate hexahydrate를 전구체로 사용한 산화니켈(NiO) 나노입자의 합성)

  • Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.593-599
    • /
    • 2023
  • Nickel oxide (NiO) nanoparticles were successfully synthesized by a simple liquid phase process for producing ceramics powder using a precursor impregnated with a nickel(II) nitrate hexahydrate aqueous solution in an industrial pulp. The microfibrile structure of the precursor impregnated with nickel nitrate hexahydrate aqueous solution was confirmed by scanning electron microscope (SEM), and the crystal structure and particle size of nickel oxide (NiO) particles produced as the heat treatment temperature of the precursor were analyzed by X-ray diffraction (XRD) and SEM. As a result, it was confirmed through XRD and SEM analysis that the temperature at which the organic material of the precursor is completely thermally decomposed was 495-500℃, and the size and crystallinity of the nickel oxide particles produced increased as the heat treatment temperature increased. The size of the nickel oxide particles obtained by heat treatment at 500-800℃ for 1 hour was 50-200 nm. It was confirmed by XRD and SEM analysis that a NiO crystal phase was formed at a heat treatment temperature of 380℃, only a single NiO phase existed until 800℃.

Control of Grain Refinement and Anisotropy of NdFeB Alloy Powder by Severe Plastic Deformation Fabricated by the Gas Atomization Process (가스분무로 제조된 NdFeB 합금분말의 강소성변형을 통한 결정립 미세화 및 이방성 제어)

  • Cho, J.Y.;Park, S.M.;Hussain, J.;Song, M.S.;Kim, T.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.124-128
    • /
    • 2022
  • NdFeB magnets have been positioned as the core materials in advanced technologies such as MRI (magnetic resonance imaging), FA (factory automation system), robot, motors, and so on based on the highest magnetic properties. To effectively improve the refined microstructure, the plastic deformation has been known as the good alternatives by the recrystallization. However, it has been regarded as being impossible because of the few slip systems in the RE-Fe-B magnets at room temperature. The purpose of this study was to investigate the possibility of control of grain refinement and magnetic anisotropy of NdFeB alloy powder by the severe plastic deformation. The NdFeB magnet powder was fabricated by gas atomization process, and the powder was pre-compacted at high temperature. The pre-compacted billets were deformed by HPT (high pressure torsion), and then the deformed billets were observed microstructure and magnetic properties. After the HPT process at room temperature, the grain size decreased with increasing because of the melted Nd-rich phase, and the anisotropy of Nd2Fe14B phase was formed after the HPT process.

Evaluation of Microstructures and Mechanical Properties of Ni-Y2O3 Sintered Alloys Based on the Powder Preparation Methods (분말 제조 방법에 따른 Ni-Y2O3 소결 합금의 미세 구조 및 기계적 특성 평가)

  • Gun-Woo Jung;Ji-Ho Cha;Min-Seo Jang;Minsuk Oh;Jeshin Park
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.484-492
    • /
    • 2023
  • In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.

Changes in Microstructure and Mechanical Properties due to Heat Treatment of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca Alloy Sheet Manufactured via Normal Casting and Twin Roll Casting Process (일반주조 및 쌍롤주조 공정으로 제조된 Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca 합금 판재의 열처리에 따른 미세조직 및 기계적 특성 변화)

  • Dong Hwan Eom;No Jin Park
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.359-366
    • /
    • 2023
  • Changes in microstructure and mechanical properties of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca (AZMX1100) alloy sheet manufactured by normal casting and twin roll casting process, were studied according to process and heat treatment. Non-uniform microstructure was observed in the initial sheet produced through both processes, and in particular, tilted dendrites and shifted central segregation were observed in the twin roll casting sheet. It was homogenized through hot rolling and heat treatment, and heat treated at 350℃ and 400℃ to compare the effect of heat treatment temperature. Both sheets were homogenized by the hot rolling process, and the grain size increased as the heat treatment temperature and time increased. It was confirmed that the grain size, deviation, and distribution of the second phase were finer and more homogenized in the TRC sheet. Accordingly, mechanical properties such as hardness, formability, and tensile strength also showed better values. However, unlike other previously reported AZMX alloy systems, it showed low formability (Erichsen value), which was judged by the influence of Al2Ca present in the microstructure.

A Study on the Construction of Financial-Specific Language Model Applicable to the Financial Institutions (금융권에 적용 가능한 금융특화언어모델 구축방안에 관한 연구)

  • Jae Kwon Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.79-87
    • /
    • 2024
  • Recently, the importance of pre-trained language models (PLM) has been emphasized for natural language processing (NLP) such as text classification, sentiment analysis, and question answering. Korean PLM shows high performance in NLP in general-purpose domains, but is weak in domains such as finance, medicine, and law. The main goal of this study is to propose a language model learning process and method to build a financial-specific language model that shows good performance not only in the financial domain but also in general-purpose domains. The five steps of the financial-specific language model are (1) financial data collection and preprocessing, (2) selection of model architecture such as PLM or foundation model, (3) domain data learning and instruction tuning, (4) model verification and evaluation, and (5) model deployment and utilization. Through this, a method for constructing pre-learning data that takes advantage of the characteristics of the financial domain and an efficient LLM training method, adaptive learning and instruction tuning techniques, were presented.

Effect of T6 heat treatment on the microstructure and mechanical properties of AA365 alloy fabricated by vacuum-assisted high pressure die casting (고진공 고압 다이캐스팅으로 제조된 AA365 합금의 미세조직과 기계적 특성에 미치는 T6 열처리의 영향)

  • Junhyub Jeon;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.121-127
    • /
    • 2024
  • We investigate the effect of T6 heat treatment on the microstructure and mechanical properties of AA365 (Al-10.3Si-0.37Mg-0.6Mn-0.11Fe, wt.%) alloy fabricated by vacuum-assisted high pressure die casting by means of thermodynamic calculation, X-ray diffraction, scanning and transmission electron microscopy, and tensile tests. The as-cast alloy consists of primary Al (with dendrite arm spacing of 10~15 ㎛), needle-like eutectic Si, and blocky α-AlFeMnSi phases. The solution treatment at 490 ℃ induces the spheroidization of eutectic Si and increase in the fraction of eutectic Si and α-AlFeMnSi phases. While as-cast alloy does not contain nano-sized precipitates, the T6-treated alloy contains fine β' and β' precipitates less than 20 nm that formed during aging at 190℃. T6 heat treatment improves the yield strength from 165 to 186 MPa due to the strengthening effect of β' and β' precipitates. However, the β' and β' precipitates reduce the strain hardening rate and accelerate the necking phenomenon, degrading the tensile strength (from 290 to 244 MPa) and fracture elongation (from 6.6 to 5.0%). Fractography reveals that the coarse α-AlFeMnSi and eutectic Si phases act as crack sites in both the as-cast and T6 treated alloys.

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

Risk Evaluation of Scrubber Deposition By-Products in the Diffusion Process (Diffusion 공정 내 스크러버 퇴적 부산물의 위험성 평가)

  • Minji Kim;Jinback Lee;Seungho Jung;Keunwon Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.76-83
    • /
    • 2024
  • In the semiconductor manufacturing process, the Diffusion process generates various reactive by-products. These by-products are deposited inside the pipes of post-processing and exhaust treatment systems, posing a potential risk of substantial dust explosions. In this study, three methods material verification, selection of analysis samples, and risk analysis were employed to address the substances produced during the Diffusion process. Among the materials handled in the Diffusion process, ZrO2, TEOD, and E-DEOS were identified as raw material capable of generating by-product dust. Test for Minimum Ignition Energy and dust explosion were conducted on the by-products collected from each processing facility. The results indicated that, in the case of MIE, none of the by-products ignited. However, the dust explosion test revealed that ZrO2 exhibited a maximum pressure of 7.6 bar and Kst value of 73.3 bar·m/s, its explosive hazard. Consequently, to mitigate such risks in semiconductor processes, it is excessive buildup.

Microstructural Investigation on the Deterioration of Silica Fume Blended Cement Matrix Under Magnesium Sulfate Attack (황산마그네슘 침식을 받은 실리카 퓸 혼합 시멘트 경화체의 성능저하에 대한 미세구조적 관찰)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.55-62
    • /
    • 2008
  • This paper reports the effect of replacement levels of silica fume on the resistance to magnesium sulfate attack. Mortar specimens incorporating silica fume were exposed to 5% magnesium sulfate solution for 360 days at ambient temperature. The main variable was the replacement levels of silica fume(0, 5, 10 and 15% of cement by mass). The resistance of mortar specimens incorporating silica fume against magnesium sulfate attack was regularly monitored by measuring compressive strength and expansion. In addition, in order to investigate the reactants formed by magnesium sulfate attack, various instrumental analyses such as XRD, SEM and DSC were used. Results demonstrated that the formation of gypsum, thaumasite and brucite led to a significant deterioration due to magnesium sulfate attack in cement matrix incorporating silica fume.