DOI QR코드

DOI QR Code

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder

석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가

  • 장우식 (조선대학교 토목공학과) ;
  • 박광필 ((재)녹색에너지연구원 전략기획단)
  • Received : 2024.02.14
  • Accepted : 2024.03.06
  • Published : 2024.03.30

Abstract

In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

석회석미분말을 콘크리트용 재료로 활용하기 위하여 치환율을 달리하여 제조한 시멘트 경화체의 역학적 특성 및 내구특성을 평가하였다. 일반적으로 석회석미분말은 시멘트 수화반응에 기여하지 못함으로 이를 사용한 모르타르의 압축강도 시험결과 치환율이 증가할수록 압축강도는 감소하였다. 그러나 석회석미분말을 사용한 모르타르의 염소이온 침투저항성, 탄산화저항성 및 화학저항성 등 내구성능을 평가한 결과 석회석미분말의 작은 입자가 시멘트 경화체 내부의 미세한 공극을 채워주는 마이크로 필러효과로 인하여 치환하지 않은 기준 모르타르에 비하여 우수한 결과를 나타내었다. 따라서 석회석미분말은 콘크리트의 내구성 향상을 위한 효과적인 방법으로 활용될 수 있을 것으로 기대된다. 본 연구에서는 석회석미분말의 치환량을 0 %, 5 %, 10 %, 15 %로 변화시켜 내구성능을 평가하였으나 향후 석회석미분말의 종료와 치환량을 다양한 수준으로 변화시켜 내구성능에 미치는 영향을 보다 자세히 연구할 필요가 있을 것으로 판단된다.

Keywords

Acknowledgement

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(과제관리번호: 2021RIS-002).

References

  1. Adewumi, A.A., Ariffin, M.A.M., Yusuf, M.O., Maslehuddin, M., Ismail, M. (2021). Effect of sodium hydroxide concentration on strength and microstructure of alkali-activated natural pozzolan and limestone powder mortar, Construction and Building Materials, 271, 121530.
  2. Al-Amoudi, O.S.B., Rasheeduzzafar, Maslehuddin, M., Abduljauwad, S.N. (1994). Influence of chloride ions on sulphate deterioration in plain and blended cements, Magazine of Concrete Research, 46(167), 113-123. https://doi.org/10.1680/macr.1994.46.167.113
  3. Ampadu, K.O., Torii, K., Kawamura, M. (1999). Beneficial effect of fly ash on chloride diffusivity of hardened cement paste, Cement and Concrete Research, 29(4), 585-590. https://doi.org/10.1016/S0008-8846(99)00047-2
  4. ASTM C 1202 (1997). Standard Method of Test for Electrical Indication of Concrete's Ability to Resist Chloride ions Penetration, American Society for Testing and Materials, PA.
  5. Choi, W.H. (2012) A Study on the Mechanical and Durability Characteristics of Limestone Powder Added Concrete for Environment-Friendly Pavement, Master's Thesis, Kangwon National University [in Korean].
  6. Cohen, M.D., Mather, B. (1991). Sulfate attack on concrete: research needs, Materials Journal, 88(1), 62-69.
  7. Hanehara, S., Yamada, K. (1999). Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology, Cement and Concrete Research, 29(8), 1159-1165. https://doi.org/10.1016/S0008-8846(99)00004-6
  8. Hartshorn, S.A., Sharp, J.H., Swamy, R.N. (2002). The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution, Cement and Concrete Composites, 24(3-4), 351-359. https://doi.org/10.1016/S0958-9465(01)00087-7
  9. Hassan, K.E., Cabrera, J.G., Maliehe, R.S. (2000). The effect of mineral admixtures on the properties of high-performance concrete, Cement and Concrete Composites, 22(4), 267-271. https://doi.org/10.1016/S0958-9465(00)00031-7
  10. Hornain, H., Marchand, J., Duhot, V., Moranville-Regourd, M. (1995). Diffusion of chloride ions in limestone filler blended cement pastes and mortars, Cement and Concrete Research, 25(8), 1667-1678. https://doi.org/10.1016/0008-8846(95)00163-8
  11. Irassar, F., Batic, O. (1989). Effects of low calcium fly ash on sulfate resistance of OPC cement, Cement and Concrete Research, 19(2), 194-202. https://doi.org/10.1016/0008-8846(89)90084-7
  12. Kang, I.K. (2023). A Fundamental Study on Hydration Properties of Portland Cement with Limestone Powder for Carbon Neutral, Master's Thesis, Kongju National University [in Korean].
  13. Koh, K.T., Yoo, W.W., Han, S.M. (2004). A study on strength development and resistance to sulfate attack of mortar incorporating limestone powder, Journal of the Korea Concrete Institute, 16(3), 303-310.
  14. Lu, L., Yang, Z., Li, K., Zhang, K., Yan, X., Marano, G. C., Briseghella, B. (2023). Synergy of inert granite powder and active mineral admixture in manufactured sand mortar: the effect on mechanical properties, chloride permeability and water absorption properties, Construction and Building Materials, 408, 133660.
  15. Lv, P., Long, G., Xie, Y., Peng, J., Guo, S. (2024). Study on the mitigation of drying shrinkage and crack of limestone powder cement paste and its mechanism, Construction and Building Materials, 411, 134325.
  16. Moon, H.Y., Lee, S.T., Kim, H.S. (2001). The selection of effective Korean cement for sulfate environments, Proceeding of the 3rd International Conference on Concrete Under Severe Conditions, CONSEC, 1, 349-356 [in Korean].
  17. Moon, H.Y., Lee, S.T., Kim, J.P. (2004). Experimental approach on sulfate attack mechanism of ordinary Portland cement matrix: part I. sodium sulfate attack, Journal of the Korea Concrete Institute, 16(4), 557-564 [in Korean]. https://doi.org/10.4334/JKCI.2004.16.4.557
  18. Nagataki, S., Otsuki, N., Hisada, M., Mizuno, K. (1995). A study on the characterization of silica fume and the evaluation of properties of concrete containing silica fume, Doboku Gakkai Ronbunshu, 1995(520), 87-98.
  19. Naik, T.R., Singh, S.S., Hossain, M.M. (1995). Properties of high performance concrete systems incorporating large amounts of high-lime fly ash, Construction and Building Materials, 9(4), 195-204. https://doi.org/10.1016/0950-0618(95)00009-5
  20. Sawara, H., Yamamura, T. (2000). Concrete properties which contain heavy calcium slurry carbonate crushed be wet process, Proceedings of the Japan Concrete Institute, 22(2), 37-42.
  21. Vuk, T., Gabrovsek, R., Kaucic, V. (2002). The influence of mineral admixtures on sulfate resistance of limestone cement pastes aged in cold MgSO4 solution, Cement and Concrete Research, 32(6), 943-948. https://doi.org/10.1016/S0008-8846(02)00729-9
  22. Wang, C., Jin, Z., Liu, G., Dong, W., Pang, B., Ding, X. (2023). Mechanisms of chloride transport in low carbon marine concrete: an alkali-activated slag system with high limestone powder, Journal of Building Engineering, 72, 106539.
  23. Wang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H., Ou, Z. (2018). A review on use of limestone powder in cement-based materials: mechanism, hydration and microstructures, Construction and Building Materials, 181, 659-672. https://doi.org/10.1016/j.conbuildmat.2018.06.075
  24. Wee, T.H., Suryavanshi, A.K., Wong, S.F., Rahman, A.A. (2000). Sulfate resistance of concrete containing mineral admixtures, Materials Journal, 97(5), 536-549.