DOI QR코드

DOI QR Code

Risk Evaluation of Scrubber Deposition By-Products in the Diffusion Process

Diffusion 공정 내 스크러버 퇴적 부산물의 위험성 평가

  • Minji Kim (Dept. of Environmenta, and Safety Engineering, Ajou University) ;
  • Jinback Lee (Dept. of Environmenta, and Safety Engineering, Ajou University) ;
  • Seungho Jung (Dept. of Environmenta, and Safety Engineering, Ajou University) ;
  • Keunwon Lee (Dept. of Environmenta, and Safety Engineering, Ajou University)
  • 김민지 (아주대학교 환경공학과) ;
  • 이진백 (아주대학교 환경공학과) ;
  • 정승호 (아주대학교 환경안전공학과) ;
  • 이근원 (아주대학교 환경안전공학과)
  • Received : 2024.01.26
  • Accepted : 2024.06.25
  • Published : 2024.06.30

Abstract

In the semiconductor manufacturing process, the Diffusion process generates various reactive by-products. These by-products are deposited inside the pipes of post-processing and exhaust treatment systems, posing a potential risk of substantial dust explosions. In this study, three methods material verification, selection of analysis samples, and risk analysis were employed to address the substances produced during the Diffusion process. Among the materials handled in the Diffusion process, ZrO2, TEOD, and E-DEOS were identified as raw material capable of generating by-product dust. Test for Minimum Ignition Energy and dust explosion were conducted on the by-products collected from each processing facility. The results indicated that, in the case of MIE, none of the by-products ignited. However, the dust explosion test revealed that ZrO2 exhibited a maximum pressure of 7.6 bar and Kst value of 73.3 bar·m/s, its explosive hazard. Consequently, to mitigate such risks in semiconductor processes, it is excessive buildup.

반도체 제조공정 중 Diffusion 공정에서는 미세 분말 등 여러 반응성 부산물이 발생한다. 부산물은 후처리 및 배기처리 시스템에 설치된 배관 안에 퇴적되고, 잠재적으로 상당한 분진폭발 위험이 있을 수 있다. 본 연구에서는 Diffusion 공정에서 발생하는 물질 검증, 분석시료 선정, 위험성 분석 3가지 방법으로 진행하였다. Diffusion 공정에서 취급 중인 물질 중 부산물 분진이 발생할 수 있는 원료는 ZrO2, TEOS, E-DEOS로 확인되었다. 각 처리시설에서 채취한 부산물을 대상으로 최소착화에너지, 분진폭발 테스트를 수행하였다. 그 결과 최소착화에너지의 경우 모든 부산물이 점화되지 않았다. 하지만, 분진폭발 테스트 결과 ZrO2이 부산물 분진에서 최대 7.6 bar, Kst는 73.3 bar·m/s로 폭발 위험성이 확인되었다. 이를 통해 반도체 공정에서 이러한 위험성을 저감 시키기 위해 배관 내부의 퇴적층이 과도하게 쌓이지 않도록 관리해야 한다.

Keywords

Acknowledgement

본 연구는 2024년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012787, 2024년 산업혁신인재성장지원사업)

References

  1. Kim, J. D., and Han, S. A., and Rhim, J. K., and Yang, W. B., "A Study on the Internal Flow Analysis of Gas Cylinder Cabinet for Specialty Gas of Semiconductor", KIGAS, 24(5), 74-75, (2020)
  2. Lee, K. W., "An Evaluation of Chemical Reactivity Hazard in Semiconductor Process", Spring conference of the KIGAS , 5-5, (2015)
  3. Lee, D. J., Kim, S. R., Kim, S. G, Kang, C. S., Lee, J. W., "A Study on measures to prevent leakage of process fluid from the VCR fitting used in the semiconductor manufactoring process", KIGAS, 27(2), 79~85, (2023)
  4. Trammell, S., McIntyre, A., "Environmental safety and health aspects of R&D and manufacturing with advanced processing materials - best known methods and standardization", The SESHA 36th Annual International High Technology ESH Symposium and Exhibition, Scottsdale, AZ, USA, (2014)
  5. Yang, W. B, Seo, B. W., Kim, S. G., "Accident Investigation Report of TEMAZ Explosion in Semiconductor Process", Korea Occupational Safety and Health Agency (KOSHA), Ulsan, Republic of Korea, (2015)
  6. Yang, W. B., Rhim, J. K., Hong, S. M., "A case study on the TEMAZ explosion accident in semiconductor process", KIGAS, 21(6), 52-60, (2017)
  7. Kim, J. D., Kwon, K. S., Rhim, J.K., Ynag, W.B., "A Study on Flow Analysis according to the Cause of Gas Leakage in the Specialty Gas Supply Device for Semiconductors", KIGAS, 25(2), 74-75, (2021)
  8. Hausmann, D.M., Kim, E., Becker, J., Gordon, R.G., "Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors", Chem. Mater., 14, 4350-4358, (2002)
  9. Sherer, J.M., Semiconductor Industry: Wafer Fab Exhaust Management CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, (2010)
  10. Chen, J.R., "Characteristics of fire and explosion in semiconductor fabrication processes", Process Saf. Prog., 21, 19-2, (2002)
  11. Lee, K., Han, I, "Study on the Causes of Duct Rupture accident of Exhaust gas facility in the Zirconium Deposition Process", Spring conference of the KIGAS, 207-207, (2016)
  12. Zhang, S., Speed, D.E., Trammell, S.R., Sharfstein, S.T., "Reactivity of deposited byproducts generated from ZrO2 atomic layer deposition" J. Loss Prev. Process Ind, 45, 78-87, (2017)
  13. Lee, K., Song, D., Lee, J., Lee, C. G., Shin, G. A., & Jung, S., "Evaluating effectiveness of dust by-product treatment with scrubbers to mitigate explosion risk in ZrO2 atomic layer deposition process" Journal of Hazardous Materials, 400, 123284, (2020)
  14. O'Neill, B.J., Jackson,D.H.K., Lee, J., Canlas, C., Stair, P.C., Marshall, C.L., Elam, J.W., Kuech,T.F., Dumesic, J.A., Huber,G.W., "Catalyst design with atomic layer deposition", ACS Catal., 5, 1804-1825, (2015)
  15. Randeberg, E., Eckhoff, R.K., "Initiation of dust explosions by electric spark discharges triggered by the explosive dust cloud itself", J. Loss Prev. Process Ind., 19, 154-160, (2006)
  16. Jonassen, N.I.E.L.S., Explosions and static electricity, In Electrical Overstress/Electrostatic 116 Discharge Symposium Proceedings, IEEE, 1-337, (1995)
  17. ASTM E1226, standard Test Method for Explosibility of Dust Cloulds, ASTM, (2019)
  18. Man, C.K., Harris, M.L., "Participation of large particles in coal dust explosions", J. Loss Prev. Process Ind., 27, 49-54, (2014)
  19. Crowl, D.A., Louvar, J.F., Chemical Process Safety: Fundamentals with Applications (3rd ed.), Prentice Hall, Upper Saddle River, NJ, USA, (2011)
  20. Han, W.S., "Changes in explosion characteristics due to mixing of Al and Zn dust", Spring Academic Paper Presentation Paper Collection, 435-437, (2011)
  21. Amyotte, P.R., Echhoff, R.K., "Dust Explosion Causation, Prevention and Mitigation: An Overview", J. Chem. Health & Safety, 17(1), 15~28, (2010)
  22. Eckhoff, R.K., Dust Explosion in the Process Industries, 3rd edition, Gulf Professional Publishing, USA, (2003)