DOI QR코드

DOI QR Code

분말 제조 방법에 따른 Ni-Y2O3 소결 합금의 미세 구조 및 기계적 특성 평가

Evaluation of Microstructures and Mechanical Properties of Ni-Y2O3 Sintered Alloys Based on the Powder Preparation Methods

  • 정건우 (전북대학교 공과대학 신소재공학부) ;
  • 차지호 (전북대학교 공과대학 신소재공학부) ;
  • 장민서 (전북대학교 공과대학 신소재공학부) ;
  • 오민석 (전북대학교 공과대학 신소재공학부) ;
  • 박제신 (전북대학교 공과대학 신소재공학부)
  • Gun-Woo Jung (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Ji-Ho Cha (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Min-Seo Jang (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Minsuk Oh (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jeshin Park (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 투고 : 2023.11.09
  • 심사 : 2023.11.21
  • 발행 : 2023.12.28

초록

In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.

키워드

과제정보

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단(NRF)의 지원을 받아 수행된 연구결과임(2021R1A2 C1007442).

참고문헌

  1. L. Ke: Science, 328 (2010) 319.
  2. G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun and E. Ma: Nat. Mater., 12 (2013) 344.
  3. J. S. Benjamin: Metall. Trans., 1 (1970) 2943.
  4. S. Ukai and M. Fujiwara: J. Nucl. Mater., 307 (2002) 749.
  5. F. Liu, Y. Liu, H. Wu, J. U. Fang, D. P. Zhao, L. J. Zhang and D. H. Liu: Trans. Nonferrous Met. Soc. China, 22 (2012) 330. https://doi.org/10.1016/S1003-6326(11)61179-5
  6. D. G. Morris and M. A. Munoz-Morris: Acta Mater., 61 (2013) 4636.
  7. M. Nganbe and M. Heilnaier: Mater. Sci. and Eng. A, 387 (2004) 609.
  8. Q. X. Tang, T. Hoshino, S. Ukai, B. Leng, S. Hayashi and Y. M. Wang: Mater. Trans., 51 (2010) 2019.
  9. C. A. Williamsa, P. Unifantowiczb, N. Balucb, G. D. W. Smith and E. A. Marquisa: Acta Mater., 61 (2013) 2219.
  10. S. Pasebani, A. K. Dutt, J. Burns, I. Charit and R. S. Mishra: Mater. Sci. Eng. A, 630 (2015) 155.
  11. C. Suryanarayana: Mater. Sci., 46 (2001) 1.
  12. A. D. Luca, C. Kenel, J. Pado, S. S. Joglekar, D. C. Dunand and C. Leinenbach: J. Mater. Res. Technol., 15 (2021) 2883.
  13. Y. Bai, R. Zhang, Y. Qi, C. Cui and Y. Cai: Vacuum, 186 (2021) 110033.
  14. Li Yu, Z. Lu, S. Peng and X. Li: J. Alloys Compd., 918 (2022) 165625.
  15. Y. Oh, C. H. Han, M. Wang, Y.-B. Chun and H. N. Han: J. Alloys Compd., 853 (2021) 156980.
  16. J. J. Park, H. J. Choe, S. M. Hong, M. K. Lee and C. K. Rhee: Powder Technol., 230 (2012) 139. https://doi.org/10.1016/j.powtec.2012.07.021
  17. L. Zhang, X. He, X. Qu, Y. Liu, M. Qin and H. Zhu: Powder Metall., 56 (2013) 24. https://doi.org/10.1179/1743290112Y.0000000017
  18. A. Khort, K. Podbolotov, R. Serrano-Garcia and Y. K. Gun'ko: J. Solid State Chem., 253 (2017) 270.
  19. Y. Liu, M.-I. Qin, L. Zhang, B.-R. Jia, Z.-Q. Cao, D.-Z. Zhang and X.-H. Qu: Trans. Nonferrous Met. Soc. China, 25 (2015) 129.
  20. C. J. Kim, J. H. Gwak, J. W. Lim, M. S. Oh and J. S. Park: Korean J. Met. Mater., 58 (2020) 843. https://doi.org/10.3365/KJMM.2020.58.12.843
  21. R. K. Khatirkar and B. S. Murty: Mater. Chem. Phys., 123 (2010) 247.
  22. G. W. Jung, W Shin, J. Lee. J. G. Jung, S. J. Lee and J. Park: Mater. Charact.,199 (2023) 112824.
  23. K. J. D. MacKenzie, G. J. Gainsford and M. J. Ryan: J. Eur. Ceram., 16 (1193) 553.
  24. Z. C. Cordero, B. E. Knight and C. A. Schuh: Int. Mater. Rev., 61 (2016) 495.
  25. Q. H. Bui, G. Dirras, S. Ramtani and J. Gubicze: Mater. Sci. Eng. A, 527 (2010) 3227.
  26. A. K. Zak, W. H. A. Majid, M. E. Abrishami and R. Yousefi: Solid State Sci., 13 (2011) 251.
  27. J. P. Morniroli and M. Gantois: J. Appl. Cryst., 16 (1983) 1.