DOI QR코드

DOI QR Code

Preparation and Evaluation of Ketoconazole-loaded Solid-SNEDDS (Self-Nanoemulsifying Drug Delivery System) using Various Solidification Carriers

다양한 분말화 담체를 이용한 케토코나졸 함유 자가미세유화약물전달시스템의 제조 및 평가

  • Da Young Song (Department of Pharmaceutical Engineering, Gyeongsang National University) ;
  • Kyeong Soo Kim (Department of Pharmaceutical Engineering, Gyeongsang National University)
  • 송다영 (경상국립대학교 제약공학과) ;
  • 김경수 (경상국립대학교 제약공학과)
  • Received : 2023.12.06
  • Accepted : 2023.12.14
  • Published : 2023.12.28

Abstract

This study aimed to develop a solid self-nanoemulsifying drug delivery system (solid-SNEDDS) to enhance the formulation of ketoconazole (KTZ), a BCS Class II drug with poor solubility. Ketoconazole, which is insoluble above pH 3, requires solubilization for effective delivery. This SNEDDS comprises oil, surfactant, and co-surfactant, which spontaneously emulsify in the gastrointestinal tract environment to form nanoemulsions with droplet sizes less than 100 nm. The optimal SNE-vehicle composition of oleic acid, TPGS, and PEG 400 at a 10:80:10 weight ratio was determined based on the smallest droplet size achieved. This composition was used to prepare liquid SNEDDS containing ketoconazole. The droplet size and polydispersity index (PDI) of the resulting liquid SNEDDS were analyzed. Subsequently, solid-SNEDDS was fabricated using a spray-drying method with solidifying carriers such as silicon dioxide, crospovidone, and magnesium alumetasilicate. The physicochemical properties of the solid-SNEDDS were characterized by scanning electron microscopy and powder X-ray diffraction, and its solubility, droplet size, and PDI were evaluated. In particular, the solid-SNEDDS containing ketoconazole and crospovidone in a 2:1 weight ratio exhibited significantly enhanced solubility, highlighting its potential for improved medication adherence and dissolution rates.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1063123).

References

  1. A. G. Warrilow, C. L. Price, J. E. Parker, N. J. Rolley, C. J. Smyrniotis, D. D. Hughes, V. Thoss, W. D. Nes, D. E. Kelly and T. R. Holman: Sci Rep., 6 (2016) 27690.  https://doi.org/10.1038/srep27690
  2. M. Adachi, Y. Hinatsu, K. Kusamori, H. Katsumi, T. Sakane, M. Nakatani, K. Wada and A. Yamamoto: Eur. J. Pharm. Sci., 76 (2015) 225.  https://doi.org/10.1016/j.ejps.2015.05.015
  3. A. T. Serajuddin: Adv. Drug Deliv. Rev., 59 (2007) 603.  https://doi.org/10.1016/j.addr.2007.05.010
  4. S.-M. Choi, Y.-K. Jeon, J.-H. Lee, C.-Y. Kang and J.-B. Park: Yakhak Hoeji, 63 (2019) 384.  https://doi.org/10.17480/psk.2019.63.6.384
  5. P. Saokham, C. Muankaew, P. Jansook and T. Loftsson: Molecules, 23 (2018) 1161.  https://doi.org/10.3390/molecules23051161
  6. R. N. Gursoy and S. Benita: Biomed. Pharmacother., 58 (2004) 173.  https://doi.org/10.1016/j.biopha.2004.02.001
  7. S. Rani, R. Rana, G. K. Saraogi, V. Kumar and U. Gupta: AAPS PharmSciTech, 20 (2019) 1.  https://doi.org/10.1208/s12249-019-1335-x
  8. H. J. Choi and K. S. Kim: Int. J. Life Sci. Pharma Res., 31 (2021) 502. 
  9. V. Annisa, T. N. S. Sulaiman, A. K. Nugroho and A. E. Nugroho: Physiology, 6 (2022) 7. 
  10. W.-T. Ke, S.-Y. Lin, H.-O. Ho and M.-T. Sheu: J. Control. Release, 102 (2005) 489.  https://doi.org/10.1016/j.jconrel.2004.10.030
  11. M. Nollet, H. Boulghobra, E. Calligaro and J. D. Rodier: Int. J. Cosmetic Sci., 41 (2019) 99.  https://doi.org/10.1111/ics.12516
  12. M. M. Badran, E. I. Taha, M. M. Tayel and S. A. Al-Suwayeh: J. Mol. Liq., 190 (2014) 16.  https://doi.org/10.1016/j.molliq.2013.10.015
  13. A. Czajkowska-Kosnik, M. Szekalska, A. Amelian, E. Szymanska and K. Winnicka: Molecules, 20 (2015) 21010.  https://doi.org/10.3390/molecules201219745
  14. S. Sharma, P. Sher, S. Badve and A. P. Pawar: AAPS PharmSciTech, 6 (2005) E618.  https://doi.org/10.1208/pt060476
  15. A. Shrivastava: Introduction to plastics engineering, William Andrew (2018).