DOI QR코드

DOI QR Code

Fabrication of Nanowire by Electrospinning Process Using Nickel Oxide Particle Recovered from MLCC

MLCC에서 회수된 산화니켈 분말의 전기방사공정을 통한 나노와이어 제조

  • Haein Shin (Department of Energy Engineering, Dankook University) ;
  • Jongwon Bae (Department of Energy Engineering, Dankook University) ;
  • Minsu Kang (Department of Energy Engineering, Dankook University) ;
  • Kun-Jae Lee (Department of Energy Engineering, Dankook University)
  • 신해인 (단국대학교 에너지공학과) ;
  • 배종원 (단국대학교 에너지공학과) ;
  • 강민수 (단국대학교 에너지공학과) ;
  • 이근재 (단국대학교 에너지공학과)
  • Received : 2023.11.22
  • Accepted : 2023.12.13
  • Published : 2023.12.28

Abstract

With the increasing demand for electronic products, the amount of multilayer ceramic capacitor (MLCC) waste has also increased. Recycling technology has recently gained attention because it can simultaneously address raw material supply and waste disposal issues. However, research on recovering valuable metals from MLCCs and converting the recovered metals into high-value-added materials remains insufficient. Herein, we describe an electrospinning (E-spinning) process to recover nickel from MLCCs and modulate the morphology of the recovered nickel oxide particles. The nickel oxalate powder was recovered using organic acid leaching and precipitation. Nickel oxide nanoparticles were prepared via heat treatment and ultrasonic milling. A mixture of nickel oxide particles and polyvinylpyrrolidone (PVP) was used as the E-spinning solution. A PVP/NiO nanowire composite was fabricated via E-spinning, and a nickel oxide nanowire with a network structure was manufactured through calcination. The nanowire diameters and morphologies are discussed based on the nickel oxide content in the E-spinning solution.

Keywords

Acknowledgement

본 연구는 2022년도 정부(환경부)의 재원으로 한국환경산업기술원의 지원(No. 2022003500003)과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C1007909)

References

  1. K. T. Hong, T. H. Lee, J. M. Suh, S. H. Yoon and H. W. Jang: J. Mater. Chem. C, 7 (2019) 9782. 
  2. H. L. An, L. S. Kang and C. G. Lee: Resources Recycling, 26 (2017) 4. 
  3. E. Y. Kim, J. C. Lee, B. S Kim, M. S. Kim and J. K. Jeong: Hydrometallurgy, 86 (2007) 89. 
  4. S. C. Davis and K. J. Klabunde: Chem. Rev., 82 (1982) 153. 
  5. D. Adler and J. Feinleib: Phys. Rev. B, 2 (1970) 3112. 
  6. S. W. Lee, Y. J. Kim and J. W. Kim: Appl. Sci., 11 (2021) 4422. 
  7. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon: Nature, 407 (2000) 496. 
  8. T. P. Mokoena, H. C. Swart and D. E. Motaung: J. Alloys Compd., 805 (2019) 267. 
  9. H. C. Jung, G. H. Kim, H. S. Hong and D. W. Kim: J. Powder Mater., 17 (2010) 175. 
  10. L. Chen, X. Tang, Y. Zhang, L. Li, Z. Zeng and Y. Zhang: Hydrometallurgy, 108 (2011) 80. 
  11. X. Chen, Y. Chen, T. Zhou, D. Liu, H. Gu and S. Fan: Waste Manage., 38 (2015) 349. 
  12. L. Li, J. B. Dunn, X. X. Zhang, L. Gaines, R. J. Chen, F. Wu and K. Amine: J. Power Sources, 233 (2013) 180. 
  13. S. Belfqueh, A. Seron, S. Chapron, G. Arrachart and N. Menad: J. Rare Earths, 41 (2023) 621. 
  14. J. H. Kim, S. T. Oh and Y. I. Lee: J. Powder Mater., 28 (2021) 259. 
  15. J. Doshi and D. H. Reneker: J. Electrost., 35 (1995) 151. 
  16. H. T. Kim, C. Y Hwang, H. B. Song, K. J. Lee, Y. J. Joo, S. J. Hong, N. K. Kang, S. D. Park, K. D. Kim and Y. H. Choa: J. Powder Mater., 15 (2008) 114. 
  17. J. Xue, T. Wu, Y. Dai and Y. Xia, Chem. Rev., 119 (2019) 5298. 
  18. B. K. Lee, J. H. Park, G. J. Park and K. R. Park: J.Korean Soc. Manuf. Process. Eng., 17 (2018). 
  19. W. Astuti, T. Hirajima, K. Sasaki and N. Okibe: Mining, Metallurgy & Exploration, 32 (2015) 176. 
  20. S. Surianti, K. C. Wanta, W. Astuti, F. R. Mufakhir, I. Perdana and P. H. Petrus: J. Min. Sci., 58 (2022) 476. 
  21. A. Q. Zhang, L. J. Cai, L. Sui, D. J. Qian and M. Chen: Polymer Rev., 53 (2013) 240. 
  22. M. W. Vannatta, M. Richards-Babb and R. J. Sweeney: J. Chem. Educ., 87 (2010) 1225. 
  23. K. Hielscher: MRS Online Proceedings Library (OPL), 1479 (2012) 21. 
  24. Y. I. Lee and Y. H. Choa: J. Powder Mater., 19 (2012) 271.