DOI QR코드

DOI QR Code

Effect of T6 heat treatment on the microstructure and mechanical properties of AA365 alloy fabricated by vacuum-assisted high pressure die casting

고진공 고압 다이캐스팅으로 제조된 AA365 합금의 미세조직과 기계적 특성에 미치는 T6 열처리의 영향

  • Junhyub Jeon (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seung Bae Son (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seok-Jae Lee (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jae-Gil Jung (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 전준협 (전북대학교 신소재공학부) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부) ;
  • 정재길 (전북대학교 신소재공학부)
  • Received : 2024.05.08
  • Accepted : 2024.05.24
  • Published : 2024.05.30

Abstract

We investigate the effect of T6 heat treatment on the microstructure and mechanical properties of AA365 (Al-10.3Si-0.37Mg-0.6Mn-0.11Fe, wt.%) alloy fabricated by vacuum-assisted high pressure die casting by means of thermodynamic calculation, X-ray diffraction, scanning and transmission electron microscopy, and tensile tests. The as-cast alloy consists of primary Al (with dendrite arm spacing of 10~15 ㎛), needle-like eutectic Si, and blocky α-AlFeMnSi phases. The solution treatment at 490 ℃ induces the spheroidization of eutectic Si and increase in the fraction of eutectic Si and α-AlFeMnSi phases. While as-cast alloy does not contain nano-sized precipitates, the T6-treated alloy contains fine β' and β' precipitates less than 20 nm that formed during aging at 190℃. T6 heat treatment improves the yield strength from 165 to 186 MPa due to the strengthening effect of β' and β' precipitates. However, the β' and β' precipitates reduce the strain hardening rate and accelerate the necking phenomenon, degrading the tensile strength (from 290 to 244 MPa) and fracture elongation (from 6.6 to 5.0%). Fractography reveals that the coarse α-AlFeMnSi and eutectic Si phases act as crack sites in both the as-cast and T6 treated alloys.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program, (Development of 3.0 GPa% Grade aluminum alloy and casting analysis technology for high vacuum die casting, NTIS 1415180233, KEIT 20020283) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. C. Schleussner, J. Rogelj, M. Schaeffer, T. Lissner, R. Licker, E. M. Fischer, R. Knutti, A. Levermann, K. Frieler and W. Hare: Nat. Clim. Change 6 (2016) 827-835. https://doi.org/10.1038/nclimate3096
  2. D. Bodansky: RECIEL 25 (2016) 142-150. https://doi.org/10.1111/reel.12154
  3. S. Zhang, Q. Fan, R. Xia and T. J. Meyer: Acc. Chem. Res. 53 (2020) 255-264. https://doi.org/10.1021/acs.accounts.9b00496
  4. J. Wu, Y. Huang, W. Ye and Y. Li: Adv. Sci. 4 (2017) 1700194.
  5. S. Tian, Y. Di, M. Dai, W. Chen and Q. Zhang: Appl. Energy 305 (2022) 117796.
  6. J. Hirsch: Mater. Forum 28 (2004) 15-23.
  7. X. P. Niu, B. H. Hu, I. Pinwill and H. Li: J. Mater. Process. Technol. 105 (2000) 119-127. https://doi.org/10.1016/S0924-0136(00)00545-8
  8. K. Ahmmed, "Effect of thermal treatment on tensile properties of a vacuum die cast hypoeutectic Al-Si alloy", 2009.
  9. Q. Hu, H. Zhao and F. Li: Mater. Sci. Eng. A 680 (2017) 270-277. https://doi.org/10.1016/j.msea.2016.10.090
  10. F. Liu, H. Zhao and R. Yang and F. Sun: Materials 12 (2019) 2065.
  11. F. Liu, H. Zhao and R. Yang and F. Sun: Mater. Today Commun. 19 (2019) 114-123.
  12. H. Zhao, F. Liu and R. Yang and F. Sun: Light Metals (2019) 227-234
  13. C. Hu, H. Zhao, X. Wang and J. Fu: Vacuum 180 (2020) 109561.
  14. A. Zovi and F. Casarotto: la metallurgia italiana (2007) 33-38.
  15. ASTM E8/E8M-13a, 2013, "Standard test methods for tension testing on metallic materials", ASTM International, West Conshonhocken, PA.
  16. E. Kozeschnik: Mathematical Modelling of Weld Phenomena5, 349 (2001)
  17. L. Ding, C. Ji, C. Lu, R. Zang, Y. Weng, Q. Liu, Z. Jia: Mater. Charact. 191 (2022) 112167.
  18. E. Aerts, P. Delavignette, R. Siems and S. Amelinckx: J. Appl. Phys. 33 (1962) 3078-3080. https://doi.org/10.1063/1.1728570
  19. X. Liu, Y. Zhang, B. Beausir, F. Liu, C. Esling, F. Yu, X. Zhao and L. Zuo: Acta Mater. 97 (2015) 338-347. https://doi.org/10.1016/j.actamat.2015.06.041
  20. B. Zhao, B. Ye, L. Wang, Y. Bai, X. Yu, Q. Wang, W. Yang: Mater. Sci. Eng. A 849 (2022) 143463.
  21. E. Cinkilic, M. Moodispaw, J. Zhang, J. Miao and A. A. Luo: Met. Mater. Trans. A 53A (2022) 2861-2873. https://doi.org/10.1007/s11661-022-06711-4
  22. M. Takeda, T. Kurumizawa, S. Sumen, K. Fukui, T. Endo: IJMR 93 (2022) 523-527.
  23. D. Bardel, M. Perez, D. Nelias, A. Deschamps, C. R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier and F. Bourlier: Acta Mater. 62 (2014) 129-140. https://doi.org/10.1016/j.actamat.2013.09.041
  24. Y. Wang, H. Zhao, X. Chen, B. Gault, Y. Brechet and C. Hutchinson: Acta Mater. (2024) 119643.
  25. G. Fribourg, Y. Brechet, A. Deschamps and A. Simar: Acta Mater. 59 (2011) 3621-3635. https://doi.org/10.1016/j.actamat.2011.02.035
  26. A. Deschamps, S. Esmaeili, W.J. Poole and M. Militzer: J. Phys. IV France 10 (2000) Pr6-151. https://doi.org/10.1051/jp4:2000626
  27. J. Wang, J. Zhu, Y. Liu, H. Peng and X. Su: J. Mater. Res. 33 (2018) 1773-1781. https://doi.org/10.1557/jmr.2018.144