The conventional finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements of commonly used displacement and pressure interpolations. The criterion for the stability in the pressure solution is the so-called Babugka-Brezzi stability condition, and the above elements do not satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element interfaces is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. This pressure residual is implemented in Q1P0 element derived from the conventional incompressible elasticity. The pressure solutions can be stable with the pressure residual though they exhibit sensitivity to the stabilization parameters. Parametric study for the solution stabilization is also discussed.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.204-206
/
2021
Real-time drilling parameters prediction is a considerably important study from the viewpoint of maximizing drilling efficiency. Among the methods of maximizing drilling, the method of improving the drilling speed is common, which is related to the rate of penetration, drillstring rotational speed, weight on bit, and drilling mud flow rate. This study proposes a method of predicting the drilling rate, one of the real-time drilling parameters, using a recurrent neural network-based deep learning model, and compares the existing physical-based drilling rate prediction model with a prediction model using deep learning.
융설 모형의 중요 매개변수인 적설분포면적은 실제 우리나라에서 적설과 관련한 관측 자료의 부족으로 인해 매개변수 추정이 어렵다. 이러한 문제점 해결을 위해 원격탐사기법을 활용하여 적설분포면적을 추출하였다. 본 연구에서는 1997년 부터 2006년 까지의 겨울철 NOAA (National Oceanic and Atmospheric Administration)의 AVHRR(Advanced Very High Resolution Radiometer) 위성영상의 8 sets의 총 108개 영상을 이용하여 적설분포면적을 추출하였고,기상청의 지상기상관측소의 최섬적설심 자료를 이용하여 GIS 자료를 구축함으로써 적설심의 공간적 분포를 추출하였다. 이를 국내 5대유역인 한강,낙동강,금강,영산강,섬진강 유역에 대하여 융설모형의 주요 매개변수인 적설분포면적,유역 평균, 최대 적설심과 적설분포감소비곡선을 구축하였다. 그 중 적설분포면적감소곡선 (SDC : Snow cover Depletion Curve)는 적설분포면적의 감소형태를 나타내 주는 지표로써 융설의 가장 민감한 매개변수이다. 이를 국내 5대 강 유역에 대해 구축하여 정량화 하였다.
The Journal of Korean Association of Computer Education
/
v.11
no.5
/
pp.57-66
/
2008
An adaptive optimization of parametric cubic convolution for image interpolation is derived in this paper. The proposed technique is based on optimizing the standard cubic convolution interpolation formula at each interpolated pixel. Conventional parametric cubic convolution methods use a fixed parameter in an image, so properties of each pixel cannot be incorporated into the interpolation. The proposed method optimizes the interpolation kernel by obtaining parameters adaptively on each pixel. A new cost function is introduced to reflect frequency properties of the original data. The proposed technique produces noticeably sharper edges than traditional techniques and exhibits an average PSNR improvement of traditional techniques.
Proceedings of the Korea Water Resources Association Conference
/
1993.07a
/
pp.327-334
/
1993
일유출량을 모의하는 수문모형이 많이 개발되었지만 그 이용에 있어서는 입력자료와 매개변수가 다양하고 매개변수의 산정에 경험을 필요로 하는 경우가 많기 때문에 수문실무자들이 사용하기에는 다소 어려운 점이 있다. 본 연구에는 최소의 입력자료(강우량, 증발량)와 매개변수로 일자연유량을 모의할 수 있는 집중형 확정론적 모형을 개발하였는데, 관측된 수문곡선으로부터 입력매개변수를 도출할 수 있으며 그 종류가 작기때문에 실무에서 쉽게 이용할 수 있도록 하였다. 개발된 모형의 기본 개념은 강우-유출에 질량불변의 법칙을 적용하고, 선형저수지와 유사한 다중 감수 과정에 따른 수문곡선에 근거한다. 제안된 수문곡선은 차단을 제외한 강우량에 기인한 유량의 시간분포를 나타내며 기저유출과 장래에 손실될 증발산량을 포함한다. 제안된 수문곡선은 2개의 상승부와 3개의 감수부로 구성되며 수문곡선의 우측부는 개방되어 있다. 수문곡선의 상승부에는 감수계수의 개념을 역으로 적용하였으며, 계산을 단순화 하기 위하여 각 상승부 및 감수부의 구간은 정수값만을 갖는다고 가정하였다. 개발된 모형을 한강유역의 인도교지점(1918-1974), 영산강유역의 나주지점(1906-1990)의 일유출량을 모의하기 위하여 적용하였다. 모형의 적용결과 모의 기간중에 매개변수의 조정없이 전 기간에 걸쳐서 양호한 장기간의 일유출량 모의 결과를 얻을 수 있었다.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.366-366
/
2012
확률강우량은 하천설계, 수자원설계 및 계획을 위한 기초자료로 활용되며 최근 이상기후 및 기후변화로 인한 극치강우의 빈도 및 양적 증가로 인한 확률강우량 산정의 불확실성 분석에 대한 관심이 크게 증가하고 있다. 수문빈도 해석에 있어서 대부분 지역이 50년 이하의 수문자료가 이용되고 있으며 수문설계에서 요구되는 50년 이상의 확률강수량 추정시에는 상당한 불확실성을 내포하고 있다. 이러한 점에서 본 연구에서는 자료연수에 따른 Sampling Error와 분포형의 매개변수의 불확실성을 고려한 해석모형을 구축하고자 한다. 빈도해석에서 매개변수를 추정하기 위해서는 일반적으로 모멘트법, 최우도법, 확률가중모멘트법이 이용되고 있으나 사용되는 분포형에 따라서 통계학적으로 불확실성 구간을 정량화하는 과정이 난해할 뿐만 아니라 극치 수문자료가 Thick-Tailed분포의 특성을 가짐에도 불구하고 신뢰구간 산정시 정규분포로 가정하는 등 기존 해석 방법에는 많은 문제점을 내포하고 있다. 본 연구에서는 이러한 매개변수의 불확실성 평가에 있어서 우수한 해석능력을 발휘하는 Bayesian기법을 도입하여 분포형의 매개변수를 추정하고 매개변수 추정과 관련된 불확실성을 평가하고자 한다. 이와 별개로 자료연한에 따른 Sampling Error를 추정하기 위해서 Bootstrapping 기반의 해석모형을 구축하고자 하며 최종적으로 빈도해석시에 나타나는 불확실성을 종합적으로 검토하였다. 빈도해석을 위한 확률분포형으로 GEV(generalized extreme value)분포를 이용하였으며 Gibbs 샘플러를 활용한 Bayesian Markov Chain Monte Carlo 모의를 기본 해석모형으로 활용하였다.
This study analyzed the effects that digital experience factors influence on purchase intention and the purchase. The study targeted an online shopping mall with a strong digital experience value among industries. The research model was derived by adding variables to independent and mediating variables according to the industry context of online shopping which is based on the theoretical background and previous studies. Product variety, price efficiency, convenience and conversation were used by terms of digital marketing mix as independent variables. Personalization has been very important factor in online shopping malls, and therefore added as a independent variable. Flow has been added as a mediating variable. Purchase and purchase intention has been used as dependent variables. For empirical testing of established research models and generalization of research results, research was conducted on online shopping malls where digital experiences are important. To do this, a survey was conducted for existing users of online shopping malls. In hypothesis testing, the hypothesis was established that product diversity, price efficiency, convenience, conversation and personalization influenced the intention to purchase online shopping. In particular, the product diversity and conversation variable were tested as the most influential factors on purchase intention. For price efficiency and personalization there were no statistically significant effect. Flow has been shown to be a partial mediator between Product variety and purchase intention in online shopping. In particular, in the case of personalization, it was tested to have a significant influence on purchase intention only when there was a flow experience called pleasure and immersion. This is because the flow experience of pleasure and immersion has played a full mediating role and significantly has affected the purchase intention, because the consumers themselves have to carry out the overall purchase journey without human help due to the nature of online. In the digital experience economy, since consumers are mostly digital consumers, where communication and sharing are the basics, they have been conducting digital word-of-mouth communication and sharing naturally before purchasing. Based on these results, theoretical and practical implications were suggested.
In this paper, we study the special geometric reparametization of the (plane polynomial) Pythagorean Hodograph curves in the view point of their roots. The PH curves are completely determined by the roots of their hodographs. we show that the loci of roots of the PH curves satisfy some interesting geometric properties.
The ferromagnetic pole piece of permanent magnet assembly for magnetic resonance imaging(MRI) is optimally designed to get high homogenious magnetic field, taking into account the non-linearity of the magnetic materials. In the design, the pole face is kept smooth and axis-symmetric by using B-spline parameterization, and nonlinear design sensitivity analysis is used for search direction.
Journal of the Korean Institute of Intelligent Systems
/
v.7
no.2
/
pp.87-95
/
1997
This paper presents an optimal design procedure to realize an BSB neural networks by means of the parametrization
of solution space and optimization of parameters using evaluation program. In particular, the performance
index based on DOA analysis may make an associative memory implementation reach on the level of practical success.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.