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Parametric Study on the Pressure Continuity Residual
for the Stabilization of Pressure in Incompressible Materials
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Abstract

The conventional finite element formulations for incompressible materials show pressure oscillations
or pressure modes in four-node quadrilateral elements of commonly used displacement and pressure
interpolations. The criterion for the stability in the pressure solution is the so-called Babuska-Brezzi
stability condition, and the above elements do not satisfy this condition, In this study, a pressure con-
tinuity residual based on the pressure discontinuity at element interfaces is used to study the stabiliza-
tion of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements,
This pressure residual is implemented in Q1P0 element derived from the conventional incompressible
elasticity. The pressure solutions can be stable with the pressure residual though they exhibit sensi-
tivity to the stabilization parmaeters. Parametric study for the solution stabilization is also discussed.
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1. INTRODUCTION

Pressure solutions in conventional finite el-
ement formulations using natural combination
of displacement (velocity in fluid problems)
and pressure interpolation functions exhibit
pressure oscillations or pressure modes in in-
compressible or nearly incompressible material-
s. During the past several decades, many res-
earchers have studied this topic since Taylor
and Hood(1973) discovered difficulty in the
pressure solution,

The use of equal-order interpolation on con-
forming quadrilateral elements, wherein the
same interpolation functions are used to rep-
resent velocity and pressure, caused difficulty
in the pressure solution. Even when several
types of mixed interpolations were employed,
however, there were cases where numerical dif
ficulties were encountered.

The simplest elements, which employ linear
or bilinear interpolation functions for velocity
and constant approximation for pressure, have
been found to work well in some cases and
poorly in others. For certain combinations of
boundary conditions and element distributions
over a domain, the sloutions display acceptable
velocities but totally spurious pressures, sev-
ere oscillations often called a checkerboard
pressure mode. The best known example whic-
h suffers from a checkerboard pressure mode
on rectangular grids, and erroneous pressure
modes and velocity inaccuracy on more general
quadrilateral grids, can be found in Sani et al.
(1981). Similar behavior was also observed
when higher-order elements were used.

The mathematical framework for under-
standing the behavior of mixed method for the
Stokes problem was provided by Babuska
(1971) and Brezzi(1974). The key requirement
boiled down to satisfaction of a stability con-

dition which involves both velocity and press-
ure spaces. This is the so-called Babus'ka-Brez
zi condition,

In the 1980’s, many new ideas and develop-
ments have been made for the stabilization of
pressure solution and the stability criterion,
for example, Oden et.al.(1982), Pitkd ranta
and Stenberg(1984), Pitkdranta and Saarinen
(1985), Hughes et.al.(1986). In 1987, Hughes
and Franca suggested a generalized formu-
lation which involves the residuals of pressure
continuity and of the equilibrium equations.
This formulation circumvents the Babuska-
Brezzi condition and makes it possible to
use a natural combination of displacement and
pressure interpolants. However, in the use of
this formulation, the relationship between the
accuracy of displacement and pressure solu-
tions and the stability parameter needs detail-
ed study.

In this paper, a pressure continuity residual
based on the pressure discontinuity at element
edges is used to stabilize pressure solutions in
the formulation of bilinear displacement-con-
stant pressure four-node quadrilateral element
(Q1P0). The stability of the pressure solutions
is studied with various stability parameters,
The accuracy of the displacement and press-
ure solutions are compared with those of other
conventional elements. The sensitivity of the
pressure solutions to the stabilization paramet-
ers is also discussed.

2. INCOMPRESSIBLE ELASTICITY FORMULATION
FOR THE STABILIZATION OF PRESSURE

Let Q be an open bounded region in R™, where
Ny is the number of space dimensions (ny=2 or
3), with piecewise smooth boundary I The
standard displacement-pressure formulation of
isotropic incompressible elasticity is:
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dive+b=0 inQ (1)
divu=0 in Q (2)
o = 2ue — pl inQ (3)
u=u* onT, (4)
c-n=t* on Ty (5)

Here ¢ is the Cauchy stress tensor, b is body
force, u is displacement (or velocity in fluid
mechanics), u is shear modulus (or viscosity in
fluid mechanics), p is pressure, [ is the ident-
ity tensor, and ¢ is the symmetric part of the
displacement gradient. Equation (2) gives the
incompressibility condition. The boundary T
consists of two subregions, I'y and I, which
are the displacement and traction boundaries,
respectively, and

FzruUrt (6)
g=T, N T (7)

The unit outward normal vector to I is den-
oted by n.

Let # and 7 be the spaces of displacement
trial solutions and test functions, and ® be the
space of pressures, Let u and éu denote dis-
placement trial solutions and test functions,
and p and Jdp denote pressure trial solutions
and test functions, respectively. The conven-
tional weak formulation for isotropic incom-
pressible materials is

oeTodQ — [ opT(div u)dQ
fa fa
= j n&udeQ + J" r(éuTt‘dF (8)

Equation (8) can be rewritten as follows by
using equation (3)

T _ : T
j 0" 2ped0) j ,3(div w)pda

- jnépT(div u)dQ

= j Sbdo + j r(éuTt‘dI“ (9)

where the trial solutions u and p, and the test
functions éu and ép are defined as follows:

u€ %;%={ulueC’® u=u*onry} (10)
ou € 7; 7= {6uldueC’ su=0onTly (11)
pepspeP;Pp={plpeCh (12)

The above weak formulation is not stable for
pressure solutions unless specific displacement
and pressure interpolations are chosen. In par-
ticular, pressure oscillations, or pressi~= mod-
es (often called checkerboarding which are
caused by singularities in the global equations)
occur in the bilinear displacement-constant press-
ure four-node quadrilateral element (Q1P0).

Hughes and Franca(1987) modified the weak
formulation (9) as follows to stabilize the pres-
sure modes

j néeTZusdQ—- f S(div u)TpdQ— j n&pT(div u)dQ

2
- H%—a(div o) (div 0)dQ

- &{%{[apm[pﬂdr
- Ii(éuT+g—E-(div #)")bd0 +[_au"t* dr
(13)

where a and g are nondimensional stabilization
parameters (x>0 and $>0), 1 is the mesh par-
ameter, and [[ - ]] is the jump operator. The
domain © denotes element interiors, and T con
sists of the element interfaces so F=Igre—r

’

where e refers to an element. the above weak
formulation addition of
‘least-squares’ forms of the following residuals:
one is the equilibrium equation (or momentum
equation) residual, the other is the pressure
continuity residual on element interfaces. Note
that, in low order element such as Q1P0, div o
almost vanishes and only the pressure conti-
nuity residual is left. These terms render the

involves the
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formulation to be coercive, in contrast to the
classic Galerkin formulation, and enable the
Babuska-Brezzi condition to be avoided. So
this formulation can provide stable pressure
solutions for seemingly arbitrary combinations
of dispalcement and pressure interpolations. In
the above formulation, however, a careful
choice of the parameters is required to prevent
a loss of accuracy in the solution. The de-
ficiency of this formulation is that the global
nature of the pressure residual terms makes
the method awkward to implement into gen-
eral finite element codes.

Silvester and Kechkar(1990) suggested a lo-
cal jump formulation wherein jump terms are
calculated at the interior interfaces for 2X2
groups of elements, which is termed a macro
element, This method makes the implemen-
tation more straightforward.

In the study, an elemental pressure disconti-
nuity operator is introduced into the pressure
continuity residual for the stabilization of pres-
sure. "he global pressure residual matrix can
be cdnstructed by the assembly of the press-
ure residual in each element.

The weak formulation which will be used in
the finite element formulation of the Q1PQ el-

ement 1s
jn[éeTZMe—é(div w)Tp—dpT(div u) 1dQ

Nel
o ; J']_e[ [ép]]eT[[D]]edr

= [ néude.Q-i- j rléuTt‘dl" (14)

where «; is a stability parameter, N is the tot-
al number of elements, I'. denotes element
interface, [[ - 1. is the elemental pressure dis-

continuity operator.

3. FINITE ELEMENT FORMULATION FOR QI1PO
ELEMENT

Consider the bilinear displacement-constant
pressure four-node quadrilateral element, whic-
h is one of the most convenient elements is

the finite element analysis. We use the follow-
ing trial functions in each element

4
u=Nd=3YNE&nd (15
=1
4
s=Bd=IZB1(fJI) d (16)
=1

4
divu=Hd= 12 Hi(¢n) i (17)
1

p=NP(n)p (18)

N=daHe Q) 9
Nix 0

Bi=, 0 Niy (20)
Niy  Nix

Hi=[Nx NyJ (21)

NP = (1] (22)

where N and NP are the displacement and pres-
sure shape functions, respectively, d is the vec-
tor of nodal displacements ux and uy, £ and n
are the referential coordinates, ¢ € [—1, +1]
and n € [ —1,+1]. The pressure is assumed to
be constant within each element. Substituting
(15)-(22) into (14) gives

od” j QBTDdeVBde —sd” j QHTN"de
—op’ jn(N*’)T HdQd — sp"Rp

=ad" j ﬂNprdQ + 4d” j ] NTtdr (23)

Here, DY is a diagonal matrix whose compon-
ents are (2u, 2, 2u) in two dimensions and (2
i, 24, 24, p, y, p) in three-dimensional problem-
s, and R is the pressure continuity redidual
matrix,
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The discrete global equations obtained from
(23) are

Ky Ko 7(dy _ |F™®
[Kpd Kpp]{p}~{ G2
where
Nel
Ka=3 }‘ o B'D*'BdQ (25)
Nel T
Kgp = —EIQQH NP dQ (26)
Nl .
Ku = —E jm (N,)T HdQ 27
Ne
Kp=-R=-Y% jn R., (28)
e=1 ®
Nel
=3 ([, N'oda+ [, NTtedr) (29

4. ELEMENTAL PRESSURE DISCONTINUITY
OPERATOR AND PRESSURE CONTINUITY
RESIDUAL MATRIX

Suppose one side I'; of an element edge I
and let’s assume this side to be the interface
of element A and B. The pressure disconti-
nuity at this side is defined as

[[pll, = pa — DB (30)

Let the residuals by the pressure disconti-
nuity at the element edges be denoted by
[[ - ]]e which is called elemental pressure dis-
continuity operator herein, then the pressure
residual at the edges of the element A is de-
fined as

nint

[[palle = ;(DA — pa) (31)

where ny; is the number of interface perele-
ment, pa is the pressure of element A, and pa;

is the pressure of adjacent element which is in

contact with the i’th interface of the element
A.

The pressure continuity residual matrix R in
equation (28) can be constructed by assemb-
ling the pressure residual of each element. To
calculate the matrix R, consider an example
subdomain shown in Fig. 1. This subdomain
has nine elements and unknown pressure at
each number of element. Each element has sid-
es of length a and b, From the definition (31),
the pressure residual at the interfaces of the
first element is

1-2 2-3 3-4 41
[([(p1]le=1 = 0+ (p1—p2) + (p1—py) + 0

Here the matrix Z; and the pressure vector

p are
Zi=1[2 -1,0,-1,0,0,0,0, 0] (33)
p=I[pLps - -+ pol" (34)

The global pressure residual is assembled
from the residuals at all element edges, so
pressure residual

Nel
= z=; jr, [[p]ldl = oy Z (35)

The semi-bandwidth of the matrix Z is de-
termined by the maximum difference of adjac-
ent elements numbers, The matrix Z is sym-
metric and positive definite,

The following two forms have been used for
the pressure residual matrix R in the

study:

Typel. R=ou 2
where a; = -é% (36)

Type 22 R=uZ2"Z
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where o 2 (37)
P, P, P,
P, P, F,
3 g
a P, P2 P2
1 2
—vq
b

Fig. 1 An example for the pressure continuity residual

5. NUMERICAL EXAMPLES

For the convergence study, the displace-
ment norm (L, norm) can be calculated as

displacement norm
= [jn (u—u®) (u—u") dQ]'”? (38)

and the energy norm (H; norm) for compress-
ible or nearly incompressible materials can be

calculated as follow:

energy norm

=1 [o(e=e)7 D(e—e") da)'” (39)

For incompressible plane strain, equation
(39) can not be used because the stree-strain
matrix D is not defined when v is 0.5. The en-
ergy norm can be decomposed into the deviat-
orin energy norm and the pressure norm as

deviatoric energy norm

= [% jﬂ(e—ah)T D (g—¢") d]'/? (40)

pressure norm

= [ (=" (p—p" d]'” (41)

In the four-node Q1P0, the pressure is con-
sidered to be constant in each element, which
makes the magnitude of pressure norm very
large compared to that of deviatoric strain en-
ergy norm, This makes it difficult to compare
(39) and (40)+(41). the following modified
form of (39) is also suggested for incompress-
ible materials to consider the both errors in
the deviatoric strain energy and pressure:

energy norm®*

= [—%— jn le—e"|Tlo—o"| dQ]'/ (42)

where the mark ‘energy norm* denotes that
the absolute values of the errors in strain and
stress are used to evaluate the error of strain
energy. In (42), ¢" in each element is calcul-
ated by using the constant pressure solution p"
as follow:

o" = 2ud — p"l. (43)

5.1 Convergence Test in Timoshenko Beam
Bending Problem

The test problem is a linear, elastic cantil-
ever with a load P at its end as shown in Fig,
2. The solution to this problem can be found in
Timoshenko and Goodier(1970).

In the convergence study of this beam prob-
lem, incompressible or nearly incompressible
plane strain is considered because both wvolu-
metric locking and pressure oscillations (or
pressure modes) occur in this case. The per-
formance of QIP0 element with two different
types of pressure residuals has been studied by
changing the stability parameter 8 from 0.0001
to 1.0. For various values of g, the y-deflection-
s at point A, are given in Table 1. The y-def-
lections in Table 1 show that the stiffness mat-
rix becomes more flexible as the stability par-
ameter f increases, Q1P0 element shows sig-
nificant locking when g is equal to zero.
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E=30x10 psi

v=05

B P = 40 Kips
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\

|
R

C

L =48

Fig. 2 Linear elastic Timoshenko beam bending problem

Table 1. Deflections in the Timoshenko beam bending prob-
lem.

Deflections at point A {UrEm /Uexact)
Pressure residual Type 1

cle 0.00011 0.001 | 0.005| 0.01 { 0.05 | 0.1 | 05 | LO

8 |0.885]0.886|0.892}0.899|0.947 | 0,991 | 1.127 | 1.173
32 |0.964 10.965|0.970|0.976 | 1.017 | 1.061 | 1.266 | 1.378
128 [0.990(0.990 | 0.993 | 0.997 [ 1.023 | 1.051 | 1.202 { 1.313
512 |0.997 10.997 |0.999 | 1.001 | 1.017 | 1.034 | 1.126 | 1.199
Pressure residual Type 2

ele 0.0001{0.001 10.005| 0.01 { 0.05 | 0.1 | 05 | 1.0

8 10.885]0.890 | 0.912 | 0.936 1.052 | 1.118 | 1.228 | 1.250
32 10.964]0.967 | 0.976 | 0.987 | 1.058 | 1.123 | 1.366 | 1.471
128 10.99010.991 | 0.995]1.001 | 1.033 | 1.060 | 1.169 | 1.244
512 10.99710.998 | 1.000|1.003 | 1.019 | 1.033 | 1.085 | 1.116

In Fig. 3 and 4 the displacement norm and
the energy norm of the Q1P0 element are com-
pared with those of other elements; QM6 el-
ement by Taylor et al.(1976) and ASQBI el-
ement by Belytschko and Bindeman(1991).
Poisson’s ratio v=0.4999 in QM6 and ASQBI;
whereas v=0.5 in Q1P0. The stability par-
ameter B is set to be 0.001. In these figures,
the displacement norm and the energy norm of
Q1P0 element show optimal convergence rates
like QM6 or ASQBI though the accuracy Q1P0
is inferior to QM6 or ASQBI (actually the per-
formance of QM6 and ASQBI is outstanding in
beam bending problems).

In another approach, prescribed displace-
ment boundary conditions instead of traction
boundary conditions has been applied to the

beam. The convergence retes of the displace-
ment norm and the energy norm in Q1P0 are
still optimal except for large B values (except
for B=0.5 or 1.0) ; whereas the accuracy of the
pressure solutions of QM6 and ASQBI bec-
omes worse since they do not satisfy Babus
ka-Brezzi stability condition. Next example
shows this more clearly,

0.0
-0.5 E
g (
-1.0
g
=
Q 1.5
&
@
g Ag
2 2. |
8
go ”s —=— QM® ]
2 ——— ASQBI
30 | —+— QIPO-Type 1
’ —=— QIPO-Type 2
35
0.4 0.6 0.8 1 1.2

log{element size)

Fig. 3 Convergence rates of displacement norms in several
elements($=0.001 in Q1PO)

2.0
1.5 ///‘ i
I
_ o
g .0 & .
S e
g T
> o —
W 05 e -
o fan—
e g
3 =
&0 0.0 F J
S )
- —=— QM6
0.5 ——— ASQBI i
—a— QIPO
-1.0
0.4 0.6 0.8 1 1.2

log{element size)

Fig. 4 Convergence rates of energy norms in several ele-
ments(f=0.001 in Q1P0)
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5.2 Driven Cavity Flow Problem
Another example is the well known driven

cavity flow problem. The geometry of the mod

el and the applied boundary conditions are
shown in Fig. 5. Two different boundary condi-
tions have been used; one of which, CASE A
(often called ‘leaky lid’ boundary condition),
causes pressure oscillations and the other,
CASE B (often called ‘ramp over one element’
boundary condition), causes pressure modes in
conventional finite element analyses, In this
example, the stability parameter p was fixed
to 0.005 and the Type 2 pressure residual has
been used.

E=1.0psi * v

i+l u =0 i+10

RN

10 10 > 10 square mesh

[ , | V= 0.35
P %
y
y -
X
Py LSS <
j—— 1.0 ———
Boundary conditions
CASE A CASE B
U=t =it g U= =uitt=1.0

u=uy=( elsewhere on T’ ug=u,=0 elsewhere on I"

Fig. 5 Driven cavity flow model and two different boundary
conditions

The distribution of pressure at y=0.35 for
Q1P0, and other elements is shown in Fig. 6,
where the boundary condition CASE A has
been used. The Smoothed ccurve obtained by
post processing, see (Lee et al., 1979), is con-
sidered as exact solution. The pressures of
QM6 and ASQBI are oscillatory whereas those
of Q1P0 with the Type 2 pressur eresidual are
stable and accurate, The distribution of pres-

sures in the boundary condition CASE B is
shown in Fig. 7. this boundary condition makes
the pressure solutions of conventional methods
more disastrous, in other words, pressure solu-
tions have positive nealry infinite value and
negative value, alternatively which is called
pressure modes or checkerboarding, The pres-
sures of QM6 and ASQBI show pressure mod-
es and therfore are not shown in Fig. 7. the
pressures of Q1P are also stable in this case.

0.3 -
smoothed curve %
o2t - QMé J
2 )¢
> ASQBI AT
A 1PO-Type 2 A o
o1l QIPO-Typ o= i
v//
L A e
3 x =
8 0.0 S 4
5 * «
-0.1 Na e
. x4
\‘ -
02 ~AT oy _
4
-0.3
0O 1 2 3 4 5 6 7 8 9 10

x-coordinate

Fig. 6 Pressure distributions at y=0.35 in the driven cavity
flow problem with the boundary condition CASE A

smoothed curve
Q.2 R B
A QIPO-Type2 A W
A
0.1 r 1
: A
g . .
2 00 . 1
o )
a, a .
-0.1 F
&
. A
Toa
-0.2 1
-0.3
o 1t 2 2 4 5 6 7 &8 9 10

x-coordinate

Fig. 7 Pressure distributions at y=0.35 in the driven cavity
flow problem with the boudnary condition CASE B
(other elements show the pressure modes)
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6. CONCLUSIONS

The Q1P0 element derived from the conven-
tional variational principle for incompressible

elasticity has been presented for the pressure
stabilization of bilinear displacement-constant
pressure four-node quadrilaterals. The addition
of the pressure continuity residual circumvents
the Babuska-Brezzi condition. The stability of
the pressure solution was studied as the stab-
ility parameter B varied from 0.0001 to 1.0.
The displacement and pressure solutions of
Q1P0 element with the pressure residual show
the following features according to the vari-
ation of B.

1) For 0<B<0.001: displacement solution
shows a good accuracy. However, pressure
oscillations or pressure modes can not be elim-
inated successfully.,

2) For 0.001<$<0.05: pressure oscillations
or pressure modes are eliminated successfully.
Pressure solutions are stable and accurate, Dis-
placement solutions are still accurate.

3) For 0.5<p<1.0: pressure oscillations or
pressure modes are eliminated but the accu-
racy of displacement and pressure solutions is
not good.
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