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Shape Optimization for Magnetic Pole Piece of PM MRI
using Noniinear Parameterized Sensitivity Analysis

Jae Seop Ryu, Chang Seop Koh
School of ECE, Chungbuk National University

Abstract - The ferromagnetic pole piece of permanent
magnet assembly for magnetic resonance
imaging(MRI) is optimally designed to get high
homogenious magnetic field, taking into account the
non-linearity of the magnetic materials. In the design,
the pole face is kept smooth and axis-symmetric by
using B-spline parameterization, and nonlinear design
sensitivity analysis is used for search direction.

1. Introduction

The permanent MRI magnet is a viable alternative
to the resistive and superconducting MRI magnet
because of the low operating cost [1]-{4]. One of the
most important aspects determining the quality of the
MRI device is the homogeneity of the magnetic flux
density in the diameter of spherical volume(DSV).

Since the permanent MRI magnet assembly
employs very strong Nd-Fe-B permanent magnet, the
device is magneticallysaturated locally even though
the magnetic circuit has large air gap. Therefore, the
magnetic non-linear property of the material have to
be considered to get an accurate solution of field
computation. However, most of the previous research
on the design of permanent MRI magnet has been
confined to linear magnetostatic model. D.Kim et al.
independently derived the linear design sensitivity
formulae based on boundary element method [31.
Y.Yao et al. derived the design sensitivity formula for
3D linear problem taking account into eddy current
based on finite element method {4].

In this paper, the shape of the magnetic pole piece
of the permanent MRI magnet is optimized taking into
account the non-linearity of the materials to get a
required homogeneity in the DSV by using 3D
nonlinear finite element method and sensitivity
analysis combined with steepest descent method. For
the manufactur- ability, the shape is kept
axis-symmetric and smooth by using B-spline
parameterization. During the optimization process finite
element meshes are deformed by using mesh
relocation method without regeneration. This method
guarantees the constant mesh topology during the
optimization [4].

2. Non-linear and parameterized Design
Sensitivity Analysis

The shape optimization problem for nonlinear
magneto-static system can be generally expressed as
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follows(3],[4]:

F(p)= A1, [A(v, )] (1-a)
(sl <[pl<iply (1-b)

Minimize
Subject to

where F is the objective function, [p] is the movable
points on the design surface, and [A] is the magnetic
vector potential in 3D non-linear problems, {pl. and
[ply are the lower and upper limitations of the
movable points, respectively.

The governing equation for the 3D non-linear
magneto-static problems is, with the magnetic vector
potential as the state variable, given as follow:

vxu(vxA-B)=T @

where v is the magnetic resistivity, B, is the
residual magnetic flux density of permanent magnet,
and J is the exiting current density. Applying
Galerkin's approximation to (2), the residual vector is
defined as follow:

[R1=[K(WIA)-[Q] (3)

where the magnetic reluctivity is non-linear function
of magnetic flux density.

The design sensitivity is defined as the total
derivative of the objective function with respect to the
design variable as follow [5]:

dF_ _ _dF + oF _ _dA
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where superscript 7T denotes the transpose. After
differentiating both sides of (3), considering the
non-linearity of the material, with respect to [p] and
multiplying an adjoint variable [4]7, we obtain
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where the matrices are defined as follows:
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- where [A] is the converged solution of (3) and in
computing (7) v is the converged magnetic reluctivity
of the material. If [4] is chosen so that the
coefficients of the terms involving dAldpl7 in (4)
and (5) are equal, the adjoint variable can be
computed as follows:
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(K+ KM= 5743 ©

The design  sensitivity,
using (4) and (9) as:

finally, is derived

_dF_ _ _dF __A[~)r(_<3[_l?l.' _ 9Kl v 4B
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The design surface composed of the movable
nodal points should be smooth in order to be
manufactured using NC  machine like lathe.
Moreover, the design surface has often
unsmoothed  jagged shape in  the optimization
process because the nodal points on the design
surface arc wusually taken as the design variables
and allowed to move independently, For this
reason, ~the design surface is  parameterized
using spline technique, and the optimal design
surfacc is found by optimizing the control points
of the spline.

With the (nxm) control points in (z,v) parametric
plane arc given, the non-rational B-spline surface is
defined as follows [6):

S(u, v)= ;};N;, LN (0)Cy an
1 if x<ulxiy,
Nr,l(u):
0 otherwise 12)
= Su—x )N, (W)
Nida) = Kivp1— %
(i o™ 0N e ()
+ e e :
Xivk ™ Xit1 13

where k and ! are the orders of B-spline basis
function, and =x is an element of knot vectors.
The control  points of B-spline have their
influence only over the limited region of the
design surface.

When the design surface is parameterized
using spline technique, the relationship between
the nodal points on the design surface and the
control points can be expressed as [6]

[p}=[NC] 14)

where [J] is Jacobian matrix determined by the
basis functions of the spline and [C] is the
control point vector. The design  sensitivity for
the control points can be computed using (14) as
follows:

dFF  _  dF dghdF[]]

AT T dla T 4T

dipl T (15)

After  the  control points  are  updatedby
steepest  descent  algorithm., the coordinates  of
the nodal points on the design surface are
computed using (14).

3. Shape Optimization Results

The shape of the magnetic pole piece of an
open permanent MRI magnet with two columns,
shown in Fig.l, is optimized to get the uniform
magnetic field in the 30cm DSV. The diameter of
the magnetic pole and the permanent magnet are
S0cm  and 60cm, respectively. The dimensions of
the analysis model are shown in Fig. 2. The
residual magnetic  flux  density of Nd-Fe-B
magnet is 121 T. The B-H characteristicof pole
piece is shown in Fig. 3. A half of the model is
discretized into 34,750 nodes and 198,000
tetrahedral elements.

Fig. 4 shows the varation of the objcctive
function values, where the linear design
sensitivity analysis gives a little bigger objective
function value than non-linear sensitivity
analysis. After 15 iterations of optimization, the
chjective  function values are almost converged.

Fig. 1 Shape of the MRI
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Fig. 2 Dimensions of PM MRl mode! (unit: mm)

Through optimization the objective functions for
linear case and non-linear case are reduced to
3.21% and 1.95% of the each initial value.

The optimized pole shapes are compared in
Fig. 5 The optimized pole shape by linear
sensitivity  analysis is deeper and the center hill
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Fig. 4 B-H curve of magnetic material
is higher than that of non-linear sensitivity
optimization result. Because the magnetic flux
density can be saturated locally in linear

computation, the sharp shape of the pole piece is

obtained. The field homogeneity for the initial
flat pole piece shape in the DSV is 4761 ppm
and for the optimal shape it is reduced to 550

ppm.

4. Conclusion

The magnetic pole piece of permanent magnet
assembly for MRI is shape optimized -considering
the magnetic non-linearity of the material. In
the optimization, the surface of pole piece is
parameterized wusing B-spline to be manufac-
tured using NC machine. Through the numerical
example, it is shown the magnetic non-linearity
of the material has to be considered to get more
accurate solution, and the optimal shape of the
pole, which gives the uniform field distribution
with less then 2% of the initial object function,
is designed.
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(a) linear optimization

(b) non-linear optimization
Fig. 5 Comparison of the optimized pole pieces
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