Parametric Study on the Pressure Continuity Residual for the Stabilization of Pressure in Incompressible Materials

비압축성 물체의 압력해 안정화를 위한 압력연속여분치의 매개변수 연구

  • Published : 1995.12.01

Abstract

The conventional finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements of commonly used displacement and pressure interpolations. The criterion for the stability in the pressure solution is the so-called Babugka-Brezzi stability condition, and the above elements do not satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element interfaces is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. This pressure residual is implemented in Q1P0 element derived from the conventional incompressible elasticity. The pressure solutions can be stable with the pressure residual though they exhibit sensitivity to the stabilization parameters. Parametric study for the solution stabilization is also discussed.

비압축성 물체를 위한 일반적인 유한요소 공식화는 흔히 사용되는 사각형요소에서조차 압력해의 진동화(oscillations) 또는 pressure modes 현상을 나타낸다. 압력해의 안정화를 위한 규준은 소위 Babuska-Brezzi 안정조건이며, 위의 요소들은 이 조건을 만족시키지 못한다. 본 연구에서는 선형변위해와 상수값의 압력해를 갖는 사각형요소 사용시 압력해를 안정화시키기 위해 요소의 변에서 발생하는 불연속압에 근거한 압력연속여분치를 사용한다. 이 압력여분치를 비압축성 탄성론으로부터 유도되는 Q1P0요소에 적용하며 매개변수의 변화에 따른 수치해의 안정화의 정도를 연구한다. 압력해는 압력 여분치 사용시 안정화될 수 있으며, 해의 안정화는 매개변수에 민감성을 나타내었다.

Keywords

References

  1. Numer. math. v.16 Error Bounds for Finite Element Method Babuska,I.
  2. Comput. Meths. Appl. Mech. Engrg. v.88 Assumed Strain Stabilization of the 4-node Guadrature for Nonlinear Problems Belytschko,T.;Bindeman,L.P.
  3. RAIRO ser. Rouge Anal. Numer. v.R-2 On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising form Lagrange Multipliers Brezzi,F.
  4. Comput. Meths. Appl. Mech. Engrg. v.65 A New Finite Element Formulation for Computational Fluid Dynamics: VII. The Stokes Problem with Various Well-posed Boundary conditions: Symmetric Formulations that Converge for All Velocity/Presure Spaces Hughes,T.J.R.;Franca,L.P.
  5. Comput. Meths. Appl. Mech. Engrg. v.59 A Finite Element Formulation for CFD: V. Circumventing the Babuska-Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Problems Accomodating Equal-order Interpolations Hughes,T.J.R.;Franca,L.P.;Balestra,M.
  6. Internat. J. Numer. Meths. Engrg. v.14 Smoothing Techniques for Certain Primitive Variable Solutions of the Navier- Stokes Equations Lee,R.L.;Gresho,P.M.;Sani,R.L.
  7. Comput. Meths. Appl. Mech. Engrg. v.31 Penalty-Finite Element Methods for the Analysis of Stokesian Flows Oden,J.T.;Kikuchi,N.;Song,Y.J.
  8. Math. Comp. v.45 A Multigrid Version of a Simple Finite Element Method for the Stokes Problem Pikaranta,J.;Saarinen,T.
  9. Report-MAT-A222, Error Bounds for the Approximation of the Stokes Problem Using Bilinea/Constant Elements on Irregular Quadrilateral Meshes Pikaranta,J.;Stenberg,R.
  10. Report-MAT-A222, The Cause and Cure(?) of the Spurious Pressures on Irregular Quadrilateral Meshes Sani,R.L.;Gresho,P.M.;Lee,R.L.;Griffiths,D.F.;Engleman,M.
  11. Comput. Meths. Appl. Mech. Engrg. v.79 Stabilised Bilinear-Constant Velocity-Pressure Finite Elements for the Conjugate Gradient Solution of the Stokes Problem Silvester,D.J.;Kechkar,N.
  12. Intern. J. Numer. Meths. Engrg. v.10 A Non-Conforming Element for Stress Analysis Taylor,R.L.;Beresford,P.J.;Wilson,E.L.
  13. Computers and Fluids v.1 A Numerical Solution of the Navior-Stokes Equations using FEM Techniques Taylor,C.;Hood,P.
  14. Theory of Elasticity(3rd ed.) Timoshenko,S.P.;Goodier,J.N.