• Title/Summary/Keyword: 도시빅데이터

Search Result 197, Processing Time 0.026 seconds

A Study on AI Industrial Ecosystem to Foster Artificial Intelligence Industry in Busan (부산지역 인공지능 산업 육성을 위한 AI 산업생태계 연구)

  • Bae, Soohyun;Kim, Sungshin;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.121-133
    • /
    • 2020
  • This study was carried out to set the direction of the new industry policy of Busan city by analyzing the changing trend of artificial intelligence technology that has recently developed rapidly and predicting the direction of future development. The company wanted to draw up support measures to utilize artificial intelligence technology, which has been rapidly emerging in the market, in the region's specialized industry. Artificial intelligence is a key keyword in the fourth industrial revolution and artificial intelligence-based data utilization technology can be used in various fields from manufacturing processes to services, and is entering an era of super-fusion in which barriers between technologies and industries will be broken down. In this study, the direction of promotion for fostering Busan as an artificial intelligence city was derived based on the comparison and analysis of artificial intelligence-related ecosystems among major local governments. In this study, we wanted to present a plan to create an artificial intelligence industrial ecosystem that can be called a key policy to foster Busan as an 'AI City'. Busan's plan to foster the AI industry ecosystem is aimed at establishing a policy direction to ultimately nurture the artificial intelligence industry as Busan's future food source.

Latent mobility pattern analysis of bus passengers with LDA (LDA 기법을 이용한 버스 승객의 잠재적 이동패턴 분석)

  • Cho, Ah;Lee, Kyung Hee;Cho, Wan Sup
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1061-1069
    • /
    • 2015
  • Recently, transportation big data generated in the transportation sector has been widely used in the transportation policies making and efficient system management. Bus passengers' mobility patterns are useful insight for transportation policy maker to optimize bus lines and time intervals in a city. We propose a new methodology to discover mobility patterns by using transportation card data. We first estimate the bus stations where the passengers get-off because the transportation card data don't have the get-off information in most cities. We then applies LDA (Latent Dirichlet Allocation), the most representative topic modeling technique, to discover mobility patterns of bus passengers in Cheong-Ju city. To understand discovered patterns, we construct a data warehouse and perform multi-dimensional analysis by bus-route, region, time-period, and the mobility patterns (get-on/get-off station). In the case of Cheong Ju, we discovered mobility pattern 1 from suburban area to Cheong-Ju terminal, mobility pattern 2 from residential area to commercial area, mobility pattern 3 from school areas to commercial area.

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.

Drought evaluation using unstructured data: a case study for Boryeong area (비정형 데이터를 활용한 가뭄평가 - 보령지역을 중심으로 -)

  • Jung, Jinhong;Park, Dong-Hyeok;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1203-1210
    • /
    • 2020
  • Drought is caused by a combination of various hydrological or meteorological factor, so it is difficult to accurately assess drought event, but various drought indices have been developed to interpret them quantitatively. However, the drought indexes currently being used are calculated from the lack of a single variable, which is a problem that does not accurately determine the drought event caused by complex causes. Shortage of a single variable may not be a drought, but it is judged to be a drought. On the other hand, research on developing indices using unstructured data, which is widely used in big data analysis, is being carried out in other fields and proven to be superior. Therefore, in this study, we intend to calculate the drought index by combining unstructured data (news data) with weather and hydrologic information (rainfall and dam inflow) that are being used for the existing drought index, and to evaluate the utilization of drought interpretation through verification of the calculated drought index. The Clayton Copula function was used to calculate the joint drought index, and the parameter estimation was used by the calibration method. The analysis showed that the drought index, which combines unstructured data, properly expresses the drought period compared to the existing drought index (SPI, SDI). In addition, ROC scores were calculated higher than existing drought indices, making them more useful in drought interpretation. The joint drought index calculated in this study is considered highly useful in that it complements the analytical limits of the existing single variable drought index and provides excellent utilization of the drought index using unstructured data.

Optimizing Locations for Micro-mobility Parking Area based on User Big-data Analysis (빅데이터 기반 공유형 마이크로 모빌리티의 주차시설 입지 최적화 연구)

  • Choi, Nakhyeon;Kim, Junghwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.195-206
    • /
    • 2023
  • Most of the Micro-mobility parking in Korea use Dockless system. However, Dockless can result in cluttering, infrastructure deficiencies, and safety challenges as has been observed in cities. It is necessary to introduce a Station Parking system in order to solve the drawbacks of the dockless, but the introduction without engineering has low accessibility and induces side effects. In this study, to decide optimal location about number of the Micro-mobility Station, we has been applied the MCLP model about the coverage range, usage demand, usage time in order to classify the type of Micro-mobility Station. For the MCLP, User Date input to reflect realistic demand in Bundang new town, Korea. The result show that the optimal number of facilities in 400 m was 146, and the coverage ratio was 99.83 %, which was most suitable coverage for solving the parking problem. We also classified the demand into 4 levels and the usage time into 3 levels, and by crossing them, we were able to classify the Parking lot types into 12 types. It is possible to propose strategic policies in the installation and operation of Micro-mobility Parking System.

An Analysis on the Expert Opinions of Future City Scenarios (미래도시 전망 분석)

  • Jo, Sung Su;Baek, Hyo Jin;Han, Hoon;Lee, Sang Ho
    • Journal of the Korean Regional Science Association
    • /
    • v.35 no.3
    • /
    • pp.59-76
    • /
    • 2019
  • This study aims to develop urban scenarios for future cities and validate the future city scenarios using a Delphi method. The scenarios of future city was derived from urban structure, land use, transportation, and urban infrastructure and development using big data analysis, environmental scanning techniques, and literature review. The Delphi survey interviewed 24 erudite scholars and experts across 6 nations including Korea, USA, UK, Japan, China, Australia and India. The Delphi survey structure was designed to test future city scenarios, verified by the 5-point Likert scale. The survey also asked the timing of each scenario likely happens by the three terms of near-future, mid-future and far-future. Results of the Delphi survey reveal the following points. Firstly, for the future urban structure it is anticipated that urban concentration continues and higher density living in global mega cities near future. In the mid-future small and medium size cities may decrease. Secondly, the land use pattern in the near-future is expected of increasing space sharing and mixed or layered vertical land-use. In addition underground space is likely to be extended in the mid-future. Thirdly, in the near-future, transport and infrastructure was expected to show ICT embedded integration platform and public and private smart transport. Finally, the result of Delphi survey shows that TOD (Transit Oriented Development) becomes a development norm and more emphasis on energy and environment fields.

Establishment of ITS Policy Issues Investigation Method in the Road Section applied Textmining (텍스트마이닝을 활용한 도로분야 ITS 정책이슈 탐색기법 정립)

  • Oh, Chang-Seok;Lee, Yong-taeck;Ko, Minsu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.10-23
    • /
    • 2016
  • With requiring circumspections using big data, this study attempts to develop and apply the search method for audit issues relating to the ITS policy or program. For the foregoing, the auditing process of the board of audit and inspection was converged with the theoretical frame of boundary analysis proposed by William Dunn as an analysis tool for audit issues. Moreover, we apply the text mining technique in order to computerize the analysis tool, which is similar to the boundary analysis in the concept of approaching meta-problems. For the text mining analysis, specific model we applied the antisymmetry-symmetry compound lexeme-based LDA model based on the Latent Dirichlet Allocation(LDA) methodologies proposed by David Blei. The several prime issues were founded through a case analysis as follows: lack of collection of traffic information by the urban traffic information system, which is operated by the National Police Agency, the overlapping problems between the Ministry of Land, Infrastructure and Transport and the Advanced Traffic Management System and fabrication of the mileage on digital tachograph.

Research on the Use of Logistics Centers in Idle site on Highway Using Social Network Analysis (사회연결망 분석을 활용한 고속도로 유휴부지의 물류센터 활용 방안에 관한 연구)

  • Gong, InTaek;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The rapid growth of mobile-based online shopping and the appearance of untact business initiated by COVID-19 has led to an explosive increase in demand for logistics services such as delivery services. In order to respond to the rapidly growing demand, most logistics and distribution companies are working to improve customer service levels through the establishment of a full-filament center in the city center. However, due to social factors such as high land prices and traffic congestion, it becomes more difficult to establish the logistics facilities in the city center. In this study, it has been proposed the way to choose the candidate locations for the shared distribution centers among the space nearby the tall-gate which can be idle after the smart tolling service is widely extended. In order to evaluate the candidate locations, it has been evaluated the centralities of all candidates using social network analysis (SNA). To understand the result considering the characteristics of centrality, the network structure was regenerated based on the distance and the traveling time, respectively. It is possible to refer the result of evaluation based on the cumulative relative importance to choose the best set of candidates.

Big Data News Analysis in Healthcare Using Topic Modeling and Time Series Regression Analysis (토픽모델링과 시계열 회귀분석을 활용한 헬스케어 분야의 뉴스 빅데이터 분석 연구)

  • Eun-Jung Kim;Suk-Gwon Chang;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.163-177
    • /
    • 2023
  • This research aims to identify key initiatives and a policy approach to support the industrialization of the sector. The research collected a total of 91,873 news data points relating to healthcare between 2013 to 2022. A total of 20 topics were derived through topic modeling analysis, and as a result of time series regression analysis, 4 hot topics (Healthcare, Biopharmaceuticals, Corporate outlook·Sales, Government·Policy), 3 cold topics (Smart devices, Stocks·Investment, Urban development·Construction) derived a significant topic. The research findings will serve as an important data source for government institutions that are engaged in the formulation and implementation of Korea's policies.

Building a New Smart City: Integrating Local Culture and Technology (지역문화와 기술이 융합된 새로운 스마트시티 구축)

  • Sim, Keebaik;Hwang, Woo-Sung;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.193-198
    • /
    • 2019
  • In smart cities around the world, urban environments have become more convenient due to information and communication technology(ICT). However, extant studies reveal that the level of life satisfaction of citizens has not improved compared to that of the pre-smart city and citizens are skeptical about the role of the smart city. This is largely because local culture and needs were neglected during the planing and development of the smart city. The research was conducted on Cambodia as a pilot site and our findings indicate that middle age group's population is significantly small and the society is at risk of losing its culture. Therefore, this paper opens up various ways of embedding cultural programs using technology in order to pass down cultural heritage to young generation, provide an emotional attachment to the inhabitants and further build up a new phase of cultural legacy. This will engender cultural uniqueness to the city and intrigue tourists around the world resulting in the growth of the tourist industry. This research will contribute locally by providing a sense of community to the public and globally by suggesting applicable methodology to other cities that are under the similar context.