학생들의 분수 나눗셈에 대한 이해는 개념적 이해를 바탕으로 수행되어야 함에도 불구하고 분수 나눗셈은 많은 학생들이 기계적인 절차적 지식으로 획득할 가능성이 높은 내용이다. 이것은 학생들이 학교에서 분수 나눗셈을 학습할 때에 일상생활에서의 경험과 선행 학습과의 연결이 잘 이루어지지 못하고 있는 것에 큰 원인이 있다고 본다. 본 연구에서는 학생들의 분수 나눗셈의 개념적 이해를 돕기 위하여 경험적 지식과의 연결 관계를 활용한 교수 방안을 실험 교수를 통해 조사하였다. 결과로서 번분수를 활용한 수업은 분수 나눗셈의 표준 알고리즘이 수행되는 이유를 알 수 있게 하는데 도움이 되나 여러 가지 절차적 지식이 뒷받침되어야 하며 분수 막대를 직접 잘라 보는 활동을 통한 수업은 분수 나눗셈에서의 나머지를 이해하는데 효과가 있다는 것을 알았다. 결론적으로, 학생들의 경험과 학교에서 이미 학습한 분수 나눗셈들의 관련 지식들을 적절히 연결하도록 한다면 수학적 연결을 통해 분수 나눗셈의 개념적 이해를 이끌 수 있다.
The purpose of this study is to justify the fraction division algorithm in elementary mathematics by applying the definition of natural number division to fraction division. First, we studied the contents which need to be taken into consideration in teaching fraction division in elementary mathematics and suggested the criteria. Based on this research, we examined whether the previous methods which are used to derive the standard algorithm are appropriate for the course of introducing the fraction division. Next, we defined division in fraction and suggested the unit-circle partition model and the square partition model which can visualize the definition. Finally, we confirmed that the standard algorithm of fraction division in both partition and measurement is naturally derived through these models.
This paper reports an analysis of 19 Chinese and Korean middles school mathematics teachers' understanding of division by fractions. The study analyzes the teachers' responses to the teaching task of generating a real-world situation representing the meaning of division by fractions. The findings of this study suggests that the teachers' conceptual models of division are dominated by the partitive model of division with whole numbers as equal sharing. The dominance of partitive model of division constraints the teachers' ability to generate real-world representations of the meaning of division by fractions, such that they are able to teach only the rule-based algorithm (invert-and-multiply) for handling division by fractions.
The meanings of division don't change and rather are connected from whole numbers to rational numbers. In this respect, connecting division of natural numbers, division of fractions, and division of decimal numbers could help for students to study division in meaningful ways. Against this background, the units of division of fractions and division of decimal numbers in fifth grade were redesigned in a way for students to connect meanings of division and procedures of division. The results showed that most students were able to understand the division meanings and build correct expressions. In addition, the students were able to make appropriate division situations when given only division expressions. On the other hand, some students had difficulties in understanding division situations with fractions or decimal numbers and tended to use specific procedures without applying diverse principles. This study is expected to suggest implications for how to connect division throughout mathematics in elementary school.
Journal of Elementary Mathematics Education in Korea
/
v.16
no.2
/
pp.295-320
/
2012
The purpose of this study is searching students' cognitive structures before and after learning division of fraction. Also the researchers investigated how their structures are connected when they solve division of fraction problems through individual interviews. The researcher suggested the instruction of division of fraction from the results.
This dissertation is aimed to investigate the reason why a contextualization is needed to help the meaningful teaching-learning concerning multiplications and divisions of fractions, the way to make the contextualization possible, and the methods which enable us to use it effectively. For this reason, this study intends to examine the differences of situations multiplying or dividing of fractions comparing to that of natural numbers, to recognize the changes in units by contextualization of multiplication of fractions, the context is set which helps to understand the role of operator that is a multiplier. As for the contextualization of division of fractions, the measurement division would have the left quantity if the quotient is discrete quantity, while the quotient of the measurement division should be presented as fractions if it is continuous quantity. The context of partitive division is connected with partitive division of natural number and 3 effective learning steps of formalization from division of natural number to division of fraction are presented. This research is expected to help teachers and students to acquire meaningful algorithm in the process of teaching and learning.
Division of fractions can be categorized as measurement division, partitive or sharing division, the inverse of multiplication, and the inverse of Cartesian product. Division algorithm for fractions has been interpreted with manipulative aids or models mainly in the contexts of measurement division and partitive division. On the contrary, there are few interpretations for the context of the inverse of a Cartesian product. In this paper the significance and the limits of existing interpretations of division of fractions in the context of the inverse of a Cartesian product were discussed. And some new easier interpretations of division algorithm in the context of a Cartesian product are developed. The problem to determine the length of a rectangle where the area and the width of it are known can be solved by various approaches: making the width of a rectangle be equal to one, making the width of a rectangle be equal to some natural number, making the area of a rectangle be equal to 1. These approaches may help students to understand the meaning of division of fractions and the meaning of the inverse of the divisor. These approaches make the inverse of a Cartesian product have many merits as an introductory context of division algorithm for fractions.
A large part of students' difficulties with fractional division algorithms in the current algorithm textbooks, seem to be due to self-induction methods. Through concrete analysis of surveys and interviews, we confirmed the educational value of fractional algorithms used to elicit alternative ways of context of determination of a unit rate. In addition, we suggested alternative methods based on the results of the teaching methods and curriculum configuration.
Journal of Elementary Mathematics Education in Korea
/
v.18
no.2
/
pp.319-339
/
2014
Recently, the discussion about division and partition of fraction increases in Korea's national curriculum documents. There are varieties of assertions arranging from the opinion that both interpretations are unintelligible to the opinion that both interpretations are intelligible. In this paper, we investigated a possibility that division and partition interpretation of fraction become valid. As a result, it is appeared that division and partition interpretation of fraction can be defined reasonably through expansion of interpretation of natural number. Besides, division and partition interpretation of fraction can be work in activity, such as constructing equation from sentence problem, or such as proving algorithm of fraction division.
We analyzed errors committed by Korean prospective elementary teachers in finding and interpreting quotient and remainder within measurement division of fractions. 65 prospective elementary teachers were participated in this study. They solved a word problem about measurement division of fractions. We analyzed solutions of all participants, and interviewed 5 participants of them. The results reveal many of these prospective teachers could not tell what fractional part of division result means. Thses results suggest that teacher preparation program should emphasize interpreting calculation results within given situations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.